APPLE
MACHINE LANGURGE

Learn machine language programming quickly and easily,
using this unique and entertaining method—combines color,
graphics, and sound with step-by-step, uncomplicated demonstrations.

/975 |

Apple
Machine Language

Don Inman Kurt Inman

Reston Publishing Company, Inc.
@ A Prentice-Hall Company

Reston, Virginia

Library of Congress Cataloging in Publication Data

Inman, Don.
Apple machine language.

Includes index.

1. Apple computer—Programming. 2. Basic
(Computer program language) 1. Inman, Kurt, joint
author. |Il. Title.

QA76.8.A66156 001.65’2 80-20083
ISBN 0-8359-0231-5
0-8359-0230-7 pbk.

© 1981 by Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia 22090

All rights reserved. No part of this book
may be reproduced, in any way or by any means,
without permission in writing from the publisher.

10 9

Printed in the United States

Contents

PREFACE vii

Chapter 1 REVIEW OF APPLESOFT Il BASIC 1
Corpmands, 2
Assignment Statements, 6
Display Statements, 8
Loop Statements and Subroutines, 11
Graphic Statements, 13
Relational Statements, 15
Precedence of Mathematical and Logical Relationships, 15
Strings and Functions, 16
BASIC Statements of Special Importance, 17
Exercises, 20
Answers to Exercises, 21

Chapter 2 CROSSING THE BRIDGE 22
Memory Use, 25
A Simple BASIC Operating System, 29
The Completed BASIC Operating System, 41
Exercises, 44
Answers to Exercises, 44

Chapter 3 INSTRUCTION CODE FORMAT 46

Number Systems, 47
Accumulator, 53

Instructions in Memory, 57-

Use of the BASIC-M/L Operating System, 57
Summary, 68

Exercises, 70

Answers to Exercises, 71

i

Chapter 4

Chapter 5

Chapter 6
BOS

Chapter 7

Chapter 8

SIMPLE GRAPHICS 72
Plotting a Point on the Screen, 73
Four-Corner Plot, 79

Drawing a Horizontal Line, 83
Drawing Vertical Lines, 86
Drawing a Rectangle, 89
Summary, 92

Exercises, 93

Answers to Exercises, 94

DISPLAYING TEXT 95
Displaying a Character, 95

Discussion of the New Instructions, 99
Running Through the Alphabet, 106
Displaying ASCII Codes, 109

Running the Program, 112

Displaying More Than One Line, 113
Summary, 120

Exercises, 122

Answers to Exercises, 124

APPLE SOUNDS 125

Modification to the BASIC Operating System, 127
Description of the Tone Experiment Program, 128
Executing the Program, 130

How Sections 2 and 3 Work, 136

Summary, 138

Exercises, 140

Answers to Exercises, 141

MORE SOUNDS AND GRAPHICS 142
Combining the Speaker and Video Display, 142
Entering and Running the Program, 147

Using the Keyboard to Play the Notes, 148
Description of the Program, 151

Entering and Running the Program, 155
Summary, 156

Exercises, 158

Answers to Exercises, 159

THE APPLE SYSTEM MONITOR 160
The Processor Status Register, 167

Subtraction, 172

Summary, 176

Exercises, 177

Answers to Exercises, 178

iv

Chapter 9 MULTIPLE PRECISION AND
NEGATIVE NUMBERS 179

Two-Byte Addition, 179
Two-Byte Subtraction, 184
Negative Numbers, 186
A Number Guessing Game, 189
Summary, 200
Exercises, 201
Answers to Exercises, 202

Chapter 10 MORE MONITOR MAGIC 203
Hexadecimal Addition—Immediate Mode, 203

Hexadecimal Subtraction, 206
Decimal Arithmetic, 208
Examining and Altering Registers, 217
Summary, 223
Exercises, 224
Answers to Exercises, 225

Chapter 11 MINI-ASSEMBLER AND ADDRESSING MODES 227

Using the Mini-Assembler, 228
@ Indexed Addressing, 234

Zero Page Indexing, 235

Absolute Indexed Addressing, 240
Indexed Indirect Addressing, 244
Indirect Indexed Addressing, 251
Summary, 255

Exercises, 257

Answers to Exercises, 258

Chapter 12 PUTTING IT ALL TOGETHER 259

BASIC 8-Bit Multiplication, 259
Multiplication Directly From BASIC, 265

BOS Multiplication Using the BASIC Operating System, 266
Multiplication Using the System Monitor, 268
Multiplication Using the Mini-Assembler, 269
8-Bit Division, 271
Summary, 276

Exercises, 277
Answers to Exercises, 279

Appendix A-1 BASIC STATEMENTS 280
A-2 MACHINE LANGUAGE INSTRUCTIONS 281
A-3 BUILT-IN SUBROUTINES 282

v

A-4
A-5

Appendix B

Appendix C-1
C-2
C3

Appendix D

DISPLAY SYMBOLS 282
PROGRAMS 283

HEX EQUIVALENTS FOR
DECIMAL NEGATIVES 284

VIDEO MEMORY 285
ASCII SCREEN CODES 287

COLOR CODES FOR
LOW RESOLUTION GRAPHICS 288

6502 INSTRUCTION CODES 289

INDEX 294

vi

Preface

The purpose of this book is to introduce Apple computer users, who have a
knowledge of BASIC language, to machine language programming. The transi-
tion from BASIC is made in small, easy steps. Color, graphics, and sound are
used early in the book to make the demonstration programs interesting and
action-packed. Each new instruction is explained, and the demonstration pro-
grams are discussed step-by-step in functional sections.

The reader first uses the BASIC statements POKE, PEEK, and CALL to
enter and execute machine language programs from within a BASIC language
program. A BASIC Operating System is then developed from which machine
language programs can be entered and executed.

The introduction from BASIC, a language the reader already knows, pro-
vides a natural approach that leads to the use of the Apple System Monitor. The
System Monitor allows the reader to enter, examine, and execute machine lan-
guage programs directly. The time used by the computer to interpret BASIC
statements is thus eliminated.

The final step in the transition is to the Apple’s Mini-Assembler, which re-
lieves the programmer of many of the tedious details involved with direct ma-
chine language programming.

Approaching machine language through BASIC provides a means for the
reader to use his or her previous knowledge as a stepping stone to explore a new
area.

You will proceed through this book in four definite stages. Machine lan-
guage programs are entered and executed by four distinct methods. One method
is introduced at each stage of the book.

1. |BASIC| Introduced in Chap. 1. Machine language programs are
under full control of BASIC, using the instructions POKE,
CALL, and PEEK.

2. BOS| Introduced in Chap. 2. Machine language programs are con-
trolled by a BASIC Operating System.

vii

3. Introduced in Chap. 8. Machine language programs are
hand-assembled and entered directly from the Apple Sys-
tem Monitor.

4. Introduced in Chap. 11. Machine language programs are
assembled by the Apple Mini-Assembler.

The [BASIC] , [BOs] , [sM] , and logos appear in the table
of contents and in the appropriate chapter headings where they are used.

viii

Chapter 1

Review of Applesoft || Basic

Several assumptions are made in writing this book. The authors felt this to be
necessary because of the numerous versions of Apple computers presently in
use.

1. You have made the necessary hardware connections. If not, see the reference
manuals provided with your Apple computer.

2. The authors have used a version of the Apple that has:
a. Applesoft Il BASIC on a plug-in ROM printed circuit card.
b. A switch on the card to select either Applesoft Il or Integer BASIC.

3. You will read and use the Apple manuals pertinent to your particular ma-
chine.

4. You know how to switch back and forth between the programming languages
available to you.

The Apple computer can speak several languages. The prompt character
indicates which language your Apple is currently ready to understand. The aster-
isk (*) indicates that you are in the machine language mode. This language is
always in the computer and does not have to be “loaded” (entered from an ex-
ternal source) from a cassette or diskette. The machine language monitor that
controls the use of this language is discussed in the latter part of this book (from
Chap. 8 on).

Asterisk When using

prompt Machine Language
*m

N\

Cursor

If your Applesoft is on the plug-in ROM pc card, your Apple also contains
a high-level English-oriented language called Integer BASIC* stored permanentlv

*BASIC was developed at Dartmouth College by John Kemeny and Thomas Kurtz as
an all-purpose computer language suitable for beginning programmers with diverse educa-
tional backgrounds. ;

in its ROM memory. ROM, which is an abbreviation for Read Only Memory, can
be “read” (used by your programs), but cannot be “written into” (changed by
you). The prompt character for Integer BASIC is a right facing arrow (>). Inte-
ger BASIC is not discussed in this book. For more information, see the Apple 11
BASIC Programming Manual (Apple product #A2L005X).

Applesoft Il is Apple’s extended BASIC language. The prompt character of
Applesoft Il is a right square bracket (]). This extended BASIC is now available
in three forms:

1. The Apple Il Plus System with the Autostart Monitor ROM
2. The Applesoft plug-in interface card
3. The Apple Language System

The Apple Il Plus System has Applesoft Il BASIC in ROM. Therefore, the
Apple Mini-Assembler, the Floating Point Package, and the SWEET-16 inter-
preter (which are stored in the Integer BASIC ROMs) are not available on the
Apple Il Plus system.

Since we will be using the Mini-Assembler later in the book, we will focus
on the system containing the Applesoft Il ROM card rather than the Apple 11
Plus system.

Right bracket APPLESOFT II
prompt

f'::

Cursor

This book is designed to provide a bridge over which the reader may cross
from programming in BASIC to programming in the computer’s native machine
language. While the book assumes a background knowledge of Applesoft Il
BASIC, a brief review of BASIC statements used by the Apple computer is pre-
sented in this chapter. If you feel confident of your knowledge of Applesoft Il
BASIC, feel free to move on to Chap. 2. However, if your BASIC is rusty, spend
some time reviewing the material here.

Although this material is not a complete discussion of Applesoft capabil-
ities, all those statements and commands necessary for understanding the re-
maining chapters of. the book are given. An Apple computer with 16K of RAM,
a tape recorder or disk drive, and Applesoft || BASIC are all that are necessary
to perform the demonstrations and exercises presented.

COMMANDS

Certain fundamental commands are necessary in preparing, debugging, and
executing a program. Those discussed here are NEW, LIST, RUN, TEXT,
GRaphics, LOAD, SAVE, CONTinue, TRACE, and NOTRACE.

2

NEW
—LIST
\RUN

COMMANDER

NEW — This erases any old program that may be in the computer’s memory.
It not only deletes the current program, but also clears all variables that
may have been set by this program. It is used before a new program is

entered.

Example:
T10LETM =50
20 PRINTM
30 LET M = M+1
40 IF M<60 THEN GOTO 20
50 END

k] NEW <——— When you type this and

press the RETURN key.

PRESTO! EVERYTHING IS GONE!

LIST — This causes the current program to be displayed on the video screen.
Several versions of this command are shown in the examples. All versions
assume that you have a program in the computer.

Examples:

1. Type: LIST and press the RETURN key.
The whole program will be displayed. If the program is very long, the
display will scroll upwards after the screen is filled.

2. Type: LIST 20,100
or
LIST 20-100 and press the RETURN key.
This will display lines 20 through 100 of the program.

3

3. Type: LIST -150 and press the RETURN key.
This will display all lines from the beginning of the program through
line 150.

4. Type: LIST 150- and press the RETURN key.
This will display all lines from line 150 through the end of the program.

5. Type: LIST 150 and press the RETURN key.
This will display only line 150.

To stop the listing temporarily at some point, hold down the CTRL (con-
trol) key and press the letter S. Use CTRL S again to resume the listing.
This will allow you to examine parts of the desired listing. A listing is
aborted by a CTRL C, but the listing cannot be continued from the point
at which it is aborted unless you note where the listing was stopped and
continue from that point with the LIST command. .
RUN — This causes the computer to RUN (or execute) the program that is cur-
rently stored in its memory. All variables are cleared and execution begins
at the lowest numbered line in the program (unless a beginning line num-
ber follows the word RUN, as in Example 2).

Examples:

1. Type: RUN and press the RETURN key.
The program is executed from the lowest line number.

2. Type: RUN 200 and press the RETURN key.
The program is executed beginning with line 200.

TEXT — This command sets the video screen format to display a full screen of
text with a maximum of 40 characters per line and 24 lines. This is the
normal format used when Applesoft |1 BASIC is accessed. This command
is used when returning from a Graphics mode to display a full screen of
text. It can also be used as a statement within a program to change from
Graphics to Text format. ‘

Example:
Type: TEXT and press RETURN

GR — This command sets the low resolution graphics format for screen display.
With this command, a 40 by 40 grid is available for graphics. The screen is
cleared with a black background, and the cursor is moved to the beginning
of a 4-line text window at the bottom of the screen. The color to be used
for graphics is automatically set to black (COLOR = 0). Some other
COLOR value must be given to display graphics (black on black doesn’t
show up too well).

Example:’
Type: GR and press RETURN

f)
40 by 40
L
~—| graphics area
Cursor --i-(;l{ --------------------- |_~ 4 lines for text
]»= -~
_4 _J

LOAD — This command causes the computer to read an Apple program from a
cassette tape into the computer’s memory. The user must have the re-
corder ready (set to the beginning of the desired program and in the PLAY
mode) before the LOAD command is given. A “beep” is sounded when the
Apple has found the information on the tape. A second beep will sound
when the program on tape has been successfully LOADed. The Applesoft
prompt will appear on the screen at that time. A LOAD may only be
interrupted by pressing the RESET key or turning off the power.

Example:

Ready your recorder, then

Type: LOAD and press RETURN.
When finished, the display will show:

] L0;AD/,/ Indicates successfully
]= LOADcd program

SAVE — This stores the program currently in the computer’s memory on cas-
sette tape. The user must press the RECORD and PLAY buttons on the
tape recorder before SAVE is executed. Beeps signal the beginning and end
of the SAVE procedure.

Example:

Ready your recorder, then
Type: SAVE and press RETURN.

CONT — If the execution of a program has been halted by a STOP, END, or
CTRL C, this command causes execution to resume at the next instruction
following the halt. Nothing is cleared. CONT cannot be used if you have
(1) modified, added, or deleted any program line or (2) received an error
message since stopping execution.

Example:
Type: CONT and press RETURN

TRACE — This is used in debugging programs. It causes line numbers to be dis-
played on the screen as the lines are executed. You can then see if the pro-
gram is performing the desired sequence of operations. The TRACE
feature is turned off by the command NOTRACE.

Example:

Type: TRACE and press RETURN
Then type RUN to see the sequence of line execution.

NOTRACE — This turns off the TRACE feature discussed above.

Example:
Type: NOTRACE and press RETURN
When the program is RUN again, no line numbers will be printed.

ASSIGNMENT STATEMENTS

There are several ways that data (both numeric and string) may be assigned
to variables. Instructions used for this purpose in this section are LET, INPUT,
READ, and GET. DATA and RESTORE instructions are also discussed ; they are
used in conjunction with the READ instruction.

LET — This statement may be used to assign values to variables. The word LET
is optional, as seen in the example at lines 50 and 60.

Examples:

10 LETM =50 ~<—— Assign a numeric value to M
20FORX=1TO9

30 LET A$ = “APPLES” <—— Assign the string APPLES to A$
40 LET M = M+1 ~<—— Alter a variable’s value

50 B=1 The word LET does not have to
60 B$ = “ PER CARTON ” :7 be used. It is optional.

70 PRINT M;A$,B;B$
80 NEXT X

INPUT — This instruction is used to assign a value to a variable during execution
of a program. When the computer reaches this instruction, it stops and
waits for the user to type in the value to be assigned to the variable.

Examples:
50 INPUT A The execution of this statement dis-
plays a question mark and waits for
| ?m the user to type in the value and press
RETURN.
70 INPUT A,B,C More than one variable can be assigned

by one INPUT statement. The values
are typed in, separated by a comma.

80 INPUT “PLEASE TYPE YOUR NAME”’; C$
A message may be printed to tell you
what INPUT is desired. The message is
typed in quotes. The variable C$ calls
for a string INPUT. A question mark is
not printed with this format.

PLEASE TYPE YOUR NAME=

90 INPUT A$ No message this time. Display will

show a question mark when this in-
¢] struction is executed.

100 INPUT “WHAT IS THE VALUE OF A?”; A
If you want a question mark when
quotes are used in a message, include
the question mark inside the quote.

(WHAT IS THE VALUE OF A?=

READ — This instructs the computer to READ a value from a DATA list and
assign that value to a variable. The first time 2 READ is executed, the first
item in the first DATA list will be used. The second time, the second item
from the DATA list will be used, etc. (See DATA for example.)

DATA — This lets you store DATA inside your program. The items will be read
sequentially. More than one DATA statement may be used in a program.
Items will be READ from the first DATA statement until all its items have
been READ. Then items will be read from the next DATA statement, etc.

Example:

1M0FOR X=1TO 10

120 READY <«———Reads DATA in this order:

130 NEXT X 10

140 DATA 10,30,20,40,50 30

150 DATA 60,80,90,70,100 20

' 40

50
60
80
90
70
100

RESTORE — This causes the next READ statement executed to start from the
first item in the first DATA list.

Example:

100 FORX=1TOS5

110 READ Y:PRINTY -« Reads and prints

120 NEXT X 10,30,50,20,40

130 RESTORE -—— Go back to start of DATA list
140FORZ=1TO 10

150 READ W:PRINT W -—— Reads and prints

160 NEXT Z : 10,30,50,20,40,60,80,100,70,90
170 DATA 10,30,50,20,40

180 DATA 60,80,100,70,90

0 30 50 20 40}
60 80 100 70 90

RESTORE

GET — This gets (or reads) a single character from the keyboard. The computer
waits for a key to be pressed, as in an INPUT statement. The character js
not displayed and does not require that the RETURN key be pressed.

Example:

200 GET H$

210 IF H$ = “Y” THEN GOTO 500

220 GOTO 100

Line 200 would wait for a key to be pressed. The typed character would
be stored as the variable H$. If the typed character is a Y, line 500 would
be executed after line 210. If not, line 220 would return execution to line
100.

DISPLAY STATEMENTS

The PRINT statement is used in many forms to display data on the video
screen. The display can also be changed from white on black to black on white
by the INVERSE statement. You can also alternate these two formats by using
the FLASH statement. The NORMAL statement returns the display to the
normal white-on-black format. HOME is used to clear the video screen. SPC is
used to format print statements.

Examples:

320 PRINT) The word PRINT used by itself
causes a line feed and return to be

executed on the screen. (See line 320
inexample below .)
5
310 PRINT A Prints the value of A and causes a line
feed and return. (See line 310 in the
example below.)

300A=5:B=6
310 PRINT A
320 PRINT

330 PRINT B

Display when these lines are executed:

5 <«——— From PRINT A
~<«————— Blank line caused by PRINT
6 ~<«—— From PRINT B
400 PRINT “A STRING” Prints the words A STRING, and

moves to the next line.

(A STRING

5® 410 PRINT A,B IF A = 5 and B = 6, this will cause the

two values to be printed on the same
)
l 5 6

line spaced far apart.

420 PRINT A;B This time the values will be printed on
% @ the same line but close together.
s © { 56
430 PRINT A$;A If A$=“A=" and A=5, this will print

r—, the string, A=, and the value of A.
A=5

440 PRINT A$;A, If A$=“A= " and B$=‘B= " with A=5
450 PRINT B$;B and B=6, the comma keeps the display
on the same line. The result of these
two lines will be as shown.
(=5 =6

500 PRINT TAB(10)A$;A The TAB function moves the printed
display over to the stated print posi-
(

tion. (Print positions on a given line
10th_/

are 1 through 40.)
position

FLASH — This statement sets the video mode to flashing. The output is alter-
nately shown as white on black and black on white. Use the NORMAL
statement to return to a nonflashing white-on-black mode.

Example:

70 FLASH

80 PRINT “FLASHING” <— The word FLASHING will flash back
and forth.

INVERSE — This sets the video mode so that the computer’s output is displayed
as black letters on a white background.

Example:

100 INVERSE
100 PRINT “INVERTED” <— The word INVERTED will appear in
black letters on a white background.

NORMAL — This sets the video mode back to the usual display of white letters
on a black background with no flashing and no inversion.

Example:

70 FLASH

80 PRINT “FLASHING” <—— The word FLASHING will FLASH
and remain flashing

100 INVERSE

TT0 PRINT “INVERTED” <—— The word INVERTED will appear as
black on white and will stay that way

120 NORMAL

130 PRINT “NORMAL” <~——_The word NORMAL and all future
printed material will be in the normal
mode (unless changed by FLASH or
INVERSE again).

HOME — This statement moves the cursor to the upper left screen position
within the text window. It also clears all text within the text window.
HOME may be used in the TEXT or GRaphics mode.

10

SPC(X) — This provides for X number of blank spaces to be inserted between

the last item printed and the next item printed if semicolons precede and
follow the SPC statement. It is only used within a PRINT statement.

Example:

400 PRINT A; SPC(2); B
If A =768 and B = 5, line 400 (when executed) would display:

(768 \5
Ais Th:,nXThenBis

printed spaces printed

LOOP STATEMENTS AND SUBROUTINES

Portions of a program may be repeated by several BASIC statements such

as GOTO, ON. . .GOTO, IF-THEN, and FOR-NEXT. Subroutines may be per-
formed by GOSUB and RETURN.

GOTO — This statement causes the program to branch from the line where the

ON .

GOTO is located to the line that is specified following the word GOTO.

Examples:

30 GOTO 200 <— All lines between 30 and 200 are
skipped.

70A =173 <«— The program branches from line 210

80 PRINT A to line 70.

90 END '

200 PRINT “THE END”

210 GOTO 70

.. GOTO 100,200,300 . . . — This statement evaluates the arithmetic ex-

pression following the word ON. It then branches to the line number
(100,200,300, . . .) corresponding to the result of the evaluation. 100,

* 200,300, etc., must be valid line numbers in the program.

17

Example:

150 ON INT(B/100) GOTO 200,300,400
160 PRINT “INT(B/100) is 0 or >3”

The expression INT(B/100) is evaluated. Then,

a. If the value = 1, line 200 will be executed following line 150.

b. If the value = 2, line 300 will be executed following line 150.

c. If the value = 3, line 400 will be executed following line 150.

d. If the value = 0 or is >3, line 160 will be executed following line 150.

IF-THEN — If the condition stated between the words IF and THEN is true,
then the instruction following the word THEN is executed. Otherwise, the
instruction following the word THEN is ignored.

Examples:

200 IF X>5 THEN GOTO 400 <—Branches to line 400 if, and only if,
X>5

210 IF X <=5 THEN PRINT “X IS NOT >5”

220 X = X+1 NIf X<=5, then the words X IS NOT
>5 are printed, then line 220 is
executed.

Otherwise, the words are not printed.
Line 220 is then executed.

FOR-NEXT — This is a combination of two statements. It allows you to “loop
through” a set of statements between the FOR statement and the NEXT
statement a specified number of times.

Examples:

—
20 FOR X=1TO 25 Upper limit
30 PLOT X,10 ~<——Plots 25 points from 1,10 through

40 NEXT X ..\25,10
Increments X by 1

20 FOR N =-10 TO 10 STEP 2 <—Increase N in steps of 2
30 PRINTN ~—— Prints even integers from -10 through
40 NEXT N 10

GOSUB — This causes the program to branch to a subroutine which you have
written at the specified line number. When the subroutine is completed, a
RETURN statement in the subroutine will return to execution of the pro-
gram at the line following the most recently used GOSUB statement.

12

Example:
200 GOSUB 2000 ——— From here ...
... here »210

2000 FOR X =1 TO 3000 to here
2010 NEXT X
2020 RETURN

Then back to . . .

RETURN — This statement is used at the end of a subroutine to return to the
statement immediately following the most recently executed GOSUB.
(See example above.)

GRAPHIC STATEMENTS

Graphic statements shown here are GRaphics, COLOR, PLOT, HLIN, VLIN,
PDL, and TEXT. The Graphics mode presents a display that is quite different
from the TEXT mode. You must be able to change from one mode to the other.

GR — This statement sets the low resolution Graphics mode. (See GR under
“Commands” section.)

COLOR — This sets the color for plotting in the low resolution Graphics mode.
Color is set to black (0) by the GR statement. The color values used are:

0 black 4 dark green 8 brown 12 green
1 magenta 5 grey 9 orange 13 yellow
2 darkblue 6 mediumblue 10 grey 14 aqua
3 purple 7 light blue 11 pink 15 white

PLOT — This turns on one of the 40 by 40 low resolution dots in the graphics
area at the column and row specified. The dot will be of the color selected
by the COLOR statement. The three statements are used together.

Example:

10 GR <«—— Set Graphics mode

20 COLOR =9 -—— Use orange

30 PLOT 20,30 -«—— Plot a point in column 20, row 30

13

HLIN — This statement is used to draw a horizontal line. Included in the state-
ment are the beginning and ending columns, as well as the row where the
line is to be drawn.

Example:
10 GR
20COLOR =4 ~<——————— Dark green color

30 HLIN 10,20 AT 30 <«————— Draw at row 30
I, X - End at column 20
Start at column 10

VLIN — This command is used to draw a vertical line from one row to another
at the specified column.

Example:

10 GR
20 COLOR =11 == Pink color

30 VLIN 6,14 AT 12 <——————Draw in column 12
N\ L - End at row 14

Start at row 6

PDL(0) or PDL(1) — This reads the current value of one of the game controls
(a number from 0 through 255). The paddles (game controls) can be used
to plot points in the low resolution Graphics mode, as shown below. (They
can also be used with high resolution graphics.)

Example:

10 GR

20 COLOR =14

30 PLOT PDL(0)/7, PDL(1)/7
Row
Column

TEXT — This statement is used to return to the TEXT mode following the use
of high or low resolution graphics.

Example:

10 GR

20 COLOR =14

30 VLIN 6,14 AT 12

40 FOR X =1 TO 3000 { «——— Delay to view the color bar

50 NEXT X
60 TEXT —- Return to the TEXT mode
70 HOME - Home the cursor

14

(: For a few seconds you see the aqua-
E colored bar
4] <« Then the screen returns to the TEXT
mode and the cursor appears at the
upper left corner.

RELATIONAL STATEMENTS

Two values may be compared by using one of several relational statements.
The result of this comparison may be used by the computer to “make a de-
cision” as to what action to perform next.

MATHEMATICAL RELATIONSHIPS

= is equal to

> s greater than

< isless than

>= s greater than or equal to

= is less than or equal to
isnotequal to

LOGICAL RELATIONSHIPS

AND true if both conditions are true; otherwise false
OR true if either or both conditions are true; otherwise false
NOT Negation of the expression

Examples:

200 IF A>5 THEN GOTO 340
300 IF A#B THEN PRINT “A IS NOT EQUAL TO B”
400 IF A=5 AND B>=6 THEN C=A+B

PRECEDENCE OF MATHEMATICAL AND LOGICAL
RELATIONSHIPS

The computer evaluates expressions by performing operations in a specific
order. The order in which it performs these operations is in accordance with the
following list. Their order of precedence is from the top downward.

15

Order Operation Function

() Evaluate expression in parentheses
2. NOT Negate
3. A Raise to a power (exponentiate)
4, %/ Multiply or divide (left to right)
5. + - Add or subtract (left to right)
6. =>,<>=<=# Compare
7. AND AND two expressions
8. OR OR two expressions

STRINGS AND FUNCTIONS

Several statements are used to manipulate strings. We will define only
those which will be used in this book. They are ASC, CHR$, and LEFTS$. Several
intrinsic functions are also available, but we will only use the INTeger function.

ASC — This command returns (or supplies) the decimal ASCII code for the first
character in the string which is enclosed in parentheses following the let-
ters ASC.

Example:

100 PRINT ASC(“YES”)quId print 89 (the ASCII code for
the letter Y)

190 GET H$ -«—would get a single character
200 IF ASC(H$)<60 THEN GOTO 100

210.... If the ASCII code for the character
typed is <60, then go to line 100.
Otherwise, line 210

CHR$ — This returns (or supplies) the ASCI| character that corresponds to the
value given in parentheses. This value must be between 0 and 255, in-

clusive.

Example:

300H=14 If H = the decimal number 14,

310 PRINT CHR$(H+55) then H+55 = 69. The character

whose ASCII code is 69 is the letter
E. The letter E would be printed.

LEFT$ — Returns (or supplies) the specified number of leftmost characters in
the string enclosed in parentheses. If no number is specified, it returns
only the leftmost character in the string.

16

Examples:
200 PRINT LEFT$(“YESTERDAY”, 3)

would print: YES (the 3 leftmost
characters of YESTERDAY)

250 INPUT H$

260 IF LEFT$(H$,1) = “Y” THEN GOTO 100

270... If the leftmost character of the string
input for H$ is a Y, then GOTO line
100. If not, go on to line 270

INT — The INTeger function returns the largest integer less than or equal to the
expression in parentheses following the letters INT.

Examples:
100 X = INT (A/3)
If A=5,A/3=1.66667 and INT(A/3) =1
If A=1,A/3=0.333333 and INT(A/3) =0
IfA=15,A/3=5and INT(A/3)=5
If A=-5,A/3=-1.66667 and INT(A/3) = -2

BASIC STATEMENTS OF SPECIAL IMPORTANCE

There are three instructions that you will be using over and over again to
establish the bridge between BASIC and the machine language programs that
you will be creating. These instructions are POKE, PEEK, and CALL.

In BASIC, the line numbers serve as a reference for the computer. In-
dividual statements are found and executed according to the line number associ-
ated with a given statement.

Machine language instructions are executed according to their placement
in memory. There are no line numbers. Execution begins at a memory location
which must be specified. Then the instructions are normally executed in the
order that they appear in memory.

The BASIC Operating System (described in Chap. 2) is used to put the
machine language instructions and data into the correct memory locations to be
used by the machine language program. This is done primarily by the following
BASIC instructions.

POKE address,data Where address is the decimal address
of the memory location where the

data is to be placed.

Since POKE is a BASIC instruction, the values for address and data must
be given as decimal values.

17

Examples:

100 POKE 768,169 POKE the value 169 into memory
location 768

768 POKE
Memory Address value POKEd
110 POKE 769,19 POKE the value 19 into memory loca-

% tion 769
[19|

769

We now have:

768 169
769 19

Addre:s>\of \Data POKEd
memory locations into memory

Each machine language instruction and each data value used in the ma-
chine language program will be entered from the BASIC Operating System by a
POKE instruction.

Once the machine language program and data have been entered by BASIC
POKE statements, control must be passed from BASIC to the machine language
program. This is done by the statement:

CALL address

CALLs for thé execution The decimal ad-
of a machine language dress where the
program (or subroutine) machine language

program begins

Example:

CALL 768 -—This would cause the computer
to execute the machine lan-
guage program that begins at
memory location 768.

18

A third BASIC instruction that you will frequently use allows you to
examine the content of a specified memory location. You can PEEK at a2 mem-
ory location with the instruction:

Parentheses
PEEK (address)

It says, “Show me what is in PEEK into this memory location
the specified memory location.”

Ay‘ el

If you want to see what you PEEKed at, use the PRINT statement.

Example:

900 PRINT PEEK (768)
This statement would cause the value contained in memory location 768
to be displayed on the video screen.

[768 169 | If 169 is in memory 768 and we ex-
ecuted the PRINT PEEK instruction in
the Immediate mode, we would see
this on the display.

JPRINT PEEK (768)
169

\ . .
]= The content of 768 is displayed

The PEEK statement can be used to examine the machine language pro-
gram itself, or it can be used to display the results of a machine language pro-
gram that has been placed in a given memory location.

These three statements (POKE, CALL, and PEEK) will be used repeatedly
to establish a link between BASIC and machine language. The machine language
is POKEd into memory by BASIC. It is then executed by the CALL statement
from BASIC. The PEEK statement of BASIC can be used to look at the results
of a machine language program or at the program itself.

You can see that you will by relying heavily on these three BASIC state-
ments. If a solid connection is to be made between BASIC and machine lan-
guage, the three building block statements must be understood. You will see
their use again in Chap. 2 when the BASIC Operating System is discussed.

19

EXERCISES

. Tell what function each of the following commands performs.
a. NEW

b. LIST

c. GR

. The TRACE command causes line numbers to be displayed as a program is
executed. What command turns off the TRACE feature?

. Name three BASIC statements used to assign values to variables.
a.
b.
c.

. If you are currently using low resolution graphics and want to return to the
Text Display Mode with the cursor in the upper left corner of the screen,
what two commands should be entered?

a.
b.

. Some of the operations shown below are in the wrong order of precedence.
Rearrange them correctly according to their precedence.

()

*
)

>
AND
NOT

. Fill in the values in the correct memory boxes as performed by the following
statements.

100 POKE 768,19 768
110 POKE 770,14 769
120 POKE 772,18 770
130 POKE 771,15 771
140 POKE 769,16 772

7. What will be displayed on the screen when the instructions of exercise 6 plus
the following struction have been executed?

150 PRINT PEEK (772)

(

20

8. If a machine language program has been POKEd into memory and you desire
to execute that program from BASIC, what BASIC statement could you use?
160

ANSWERS TO EXERCISES

1. a. NEW—Erases any old program and clears all variables
b. LIST — Displays the current program on the video screen
c. GR — Sets the screen display to the low resolution graphics format
2. NOTRACE
. LET A =5 (or just plain A=5)
. INPUT A
. READ A

. TEXT
. HOME

w
o oW

»

769 16
770 14
771 15
772 18

8. 160 CALL 768

21

Chapter 2

Crossing the Bridge

When you communicate with the computer in BASIC, you are talking
through an interpreter. Each program line must be examined in detail by the
interpreter and translated into a code which the computer can understand. It is
easy for you to write programs in BASIC, but it is a “foreign” language to the
computer. The computer cannot understand a single simple BASIC statement.
BASIC words and statements must be translated into binary number codes that
have a precise meaning to the computer. These number codes are “words” that
the computer can understand. They are ‘the language of the computer, called
machine language. Instructions must be in machine language code before the
computer can understand them.

—> INTERPRETER]-» COMPUTER
I

Enter BASIC Translate to Take action
here machine language

Once the BASIC statements have been interpreted, the computer acts on
them. Its actions and the results it obtains must be translated once more into a
form which BASIC can use and which you will be able to understand easily.

COMPUTER —_— MAGIé:onLACK , VIDEO ,

Action and Translated to a Output
results in form that you and
machine language = BASIC can “read”

22

Translating BASIC is a time-consuming chore for the interpreter, and it is
wasteful of computer time. In addition, the BASIC language may not be able to
handle everything that you might want the computer to do.

Although machine language programming may be a more time-consuming
and detailed task for you than programming in BASIC, it brings you into much
closer contact with the computer. When you speak to the computer in machine
language, you are talking to it directly. You will get quick responses and will
gain a better understanding of your computer’s “personality,” its full capabil-
ities, and also its shortcomings. You will find that the computer speaks and
understands a very limited, formal language. Each word is the same length and
follows a rigid format. But its rules of form and syntax are much simpler than
those of the English language.

The machine language words can be broken down into eight bits (binary
dlglts) that have only two possible states (or conditions). These tiny blts are
much like a light that is either on or off.

ON ON \\/{;
/4 N |-
OFF OFF

OFF ON

The computer interprets these bits as being one of two numeric symbols,
0 or 1. The pattern of 1’s and 0’s make a meaningful word, or a complete idea,
to the computer. Therefore, we need to learn these words if we are to communi-
cate directly with it.

\\\//
2.0
OFF ON

An example of a pattern of 8 computer bits (a pattern with a size and
shape that the computer can understand) is shown.

01011011

OFF ON OFF OFF

The computer would recognize this pattern as a unique number code and
would respond by taking a specific action or using the number as a specific
piece of data.

23

Since machine language instructions are merely numbers that are placed
in the computer’s memory, we can use BASIC to perform this operation. The
BASIC instruction:

POKE address, data

will store the given data into the memory location whose address is given. (See
Chap. 1 for a review of this instruction.)

Example:

POKE 768,173
T~ Data value 173 is POKEd

Data value is POKEd into

memory location 768

The data given in the POKE statement must be in the range of O through
255, due to the nature of the computer’s memory locations. Larger numbers will
take up more than one memory location. If you try to POKE a number larger
than 255 into memory, the cormputer will not accept the POKE. However, it
won’t POKE you back. Instead it will merely respond with an ILLEGAL QUAN-
TITY ERROR.

Example:

Too big

POKE 769,256\/

?7ILLEGAL QUANTITY ERROR
]I

It is important that you be careful where you POKE values. You may
destroy essential values or instructions if you POKE into the wrong memory
location.

APPLESOFT Il also has an instruction that will let you display the deci-
mal value of the contents of a given memory location. It is:

PEEK (address)

To display the value in a given address, you could use the statement 200 PRINT
PEEK(768). The computer would print the decimal value (0 through 255) that
was contained in the memory location whose address is 768.

So, you see, the Apple will let you POKE values into its memory, and it
will 'let you PEEK at values that are already in its memory. You should spend
some time experimenting with these two instructions in the Immediate Execu-
tion mode. Try the following examples and others of your own.

24

Examples:

First POKE /

(" 1POKE 768,173
1POKE 769,25
1POKE 770,3

1=
-|,\\\Il/,

Then PEEK @ &2

]POKE 768,173
1POKE 769,25
]POKE 770,3

JPRINT PEEK(768) You see, the value 173 is in memory
173 = location 768

JPRINT PEEK(769) / And the value 25 is in memory loca-
25 = tion 769

JPRINT PEEK(770) s And the value 3 is in memory location
3 - 770

]=

The decimal values that can be used for the address in the POKE and
PEEK statements depend on the memory capacity of your computer.

MEMORY USE

Many memory addresses cannot be used for machine language programs,
as they contain information necessary for the Apple’s operating system. The
operating system might be compared to an airport traffic controller who directs
the flow of traffic in and out of the airport. The operating system directs the flow
of actions taken by the computer. A POKE into the operating system’s memory
locations might alter the operation of the system or the operation of your
BASIC program.

In addition to the Apple’s operating system, you will be using the BASIC
Operating System that will be discussed in this chapter. It is written in BASIC,
and will be stored in the section of memory that is reserved for BASIC programs
(see Memory Map below). It will control the input, revisions, and operation of
the machine language programs that you will be using.

Nor can data be successfully stored at addresses that contain Monitor
ROMS, APPLESOFT ROMS, or unused Input/Output ports. The ROMs are
Read Only Memories from which information can be read, but into which you
cannot put information. They already contain information that is protected
(cannot be changed by a program or immediate mode input).

A memory map follows for the Applesoft firmware version of the Apple
computer.

25

MEMORY MAP
APPLESOFT IN FIRMWARE (ROM)

Address _ Function
00000-00511 Program workspace — not for user
00512-00767 Keyboard character buffer
*00768-01023 Free to user for short machine language programs
01024-02047 Screen Display area

02048-XXXXX User area for BASIC programs and variables. XXXXX is de-
termined by the maximum amount of RAM memory in-
stalled in your machine.
16K installed - XXXXX = 16383
32K installed - XXXXX =32767
64K installed - XXXXX = 49151

08192-16383 Used by high resolution graphics (page 1)
16384-24575 Used by high resolution graphics (page 2)
49152-53247 Hardware 1/O addresses
53248-63487 Applesoft Interpreter (if switch set for Applesoft BASIC)
53248-57343 ROM Area (If switch set for Integer
57344-63487 } lApple Integer BASIC and } BASIC)

Mini-Assembler

64488-65535 Apple System Monitor

*This is the area that you will be using for your machine language programs.

Note:If you have Applesoft on diskette, see your Disk Operating System In-
structional and Reference Manual (Apple Product #A2L0012) for a mem-
ory map.

The area that will be used for your machine language programs has been
marked with an asterisk on each memory map. This area, from memory address
768 through address 1023, is the same for both Applesoft versions. It can be
used safely for most, if not all, of your machine language programs. If you need
more space when your programs get longer, we can place them in the area nor-
mally reserved for BASIC programs.

We will use the program below to demonstrate the method of using BASIC
to POKE a machine language program into memory. The data in the POKE state-
ments are the elements of the machine language program. We will also PEEK to
make sure that the program was correctly POKEd in at the right addresses.

26

POKE AND PEEK DEMONSTRATION

100 REM * CLEAR THE SCREEN *
110 HOME

200 REM * POKE MACHINE LANGUAGE PROGRAM *
210 POKE 768,169

220 POKE 769,19

230 POKE 770,141

240 POKE 771,37

250 POKE 772,3

260 POKE 773,96

300 REM * PEEK AT THE PROGRAM *
310 FOR X = 768 TO 773

320 PRINT PEEK(X)

330 NEXT X

Now if you RUN this BASIC program, the values POKEd into memory
will be displayed.

ﬁ69
19
141
37
3
96
1=

Yes, the machine language program has been POKEd into the correct
memory locations by the BASIC program. By using just two BASIC instructions,
you have the tools necessary to enter machine language programs (with POKE)
and to look at the machine language program (with PEEK). However, we also
need a method of executing the machine language program after it has been
entered.

The CALL instruction causes the computer to execute the machine lan-
guage program beginning at a specified address. The address to use with the
machine language program that you have just entered is 768. We would execute
the program by using the statement:

410 CALL 768
The CALL statement is used to execute a machine language program that
is a subroutine of a BASIC program. A GOSUB statement executes a BASIC sub-

routine from a BASIC program; a CALL statement executes a machine language
subroutine from a BASIC program.

27

We'll add the CALL statement to our program so that we can execute the
machine language subroutine. We'll also add a PEEK statement to look at the
results of the machine language program to make sure that it executed correctly.

The last instruction executed in the machine language program must be a
RETURN FROM SUBROUTINE (RTS). This is a machine language instruction
that performs the same function for a machine language subroutine as the
RETURN statement in BASIC does for a subroutine in BASIC. It returns con-
trol to the BASIC program from which the machine language program was
CALLed.

Don’t worry now about the machine language instructions being used in
the program. Machine language codes will be introduced slowly starting in Chap.
3. For now, an explanation of each section of the program is given to the right
of the machine codes. Our completed program looks like this.

POKE and PEEK, THEN PEEK AGAIN

:] 100 REM * CLEAR THE SCREEN *
110 HOME

200 REM * POKE MACHINE LANGUAGE PROGRAM *

210 POKE 768,169 Loads the value 19
220 POKE 769,19
k 230 POKE 770,141 Store it in memory

240 POKE 771,37
250 POKE 772,3
260 POKE 773,96 Return from subroutine

300 REM * PEEK AT THE PROGRAM *
~ ~ 310FORX=768TO 773
®® 320 PRINT PEEK(X)
330 NEXT X

27” 400 REM * EXECUTE THE PROGRAM *
&el 410CcALL 768

% 500 REM * LOOK INTO MEMORY FOR RESULT *
19 C® 510 PRINT: PRINT PEEK(805)

We stored the 19 here.

28

When the program is run, this is what you’ll see:

169 -« Peeking at the program now (caused
19 by lines 310-330)
141 b,
37 Pyt
3
96
19 Yes, the 19 was stored in the correct
location (executed by line 410 and
1= memory PEEKed at by line 510).
==
D fas]

When the program is RUN, you do not see the machine language instruc-
tions being POKEd in by statements 210-260. The results of the PEEKSs per-
formed by the FOR-NEXT loop (lines 310-330) are seen on the screen:

169 These are machine language codes and data values
19 which were POKEd in by lines 210-260 and

141 PRINTed by the statement at line 320 in the

37 FOR-NEXT loop.

3

96

After the data has been PEEKed at, line 410 causes execution of the machine
language program. When the computer returns to the BASIC program (caused by
the last instruction in the machine language program), line 510 PRINTSs the value
19, thus assuring us that the data has been placed in the memory location that
we requested.

A SIMPLE BASIC OPERATING SYSTEM

Based on the BASIC instructions just used, we'll soon build a simple
BASIC program that can accept, run, and read the results of a machine language
program. It will lack many features that are desirable for more sophisticated pro-
gramming, but it will be sufficient for our purposes.

It is a BASIC language program, but you may use it to enter each machine
language program that you encounter in the rest of this book. You may also use
it to examine the machine language programs for errors once they have been
entered. You will use it to execute the machine language programs by using the
CALL statement at the appropriate time. You can even use the BASIC program
to examine the results of the machine language program that it creates.

29

The BASIC program will be used for so many things that we have decided
to call it an Operating System. It is the operator and is in control of all the ac-
tions that will be taken by the computer once it has been entered and run. Since
it is written in BASIC, we have given it the full name of: BASIC Operating Sys-
tem (Operating System for short).

Keep in mind that the Operating System is written in BASIC, so it under-
stands (or uses) BASIC statements and decimal numbers. However, as we stated
before, the computer can only understand machine language instructions that
are coded as binary numbers. In fact, most standard machine language references
list the machine language codes as hexadecimal numbers. These strange hexadeci-
mal numbers will be explained in Chap. 3, where you will be introduced to ma-
chine language instructions.

Here is our dilemma:

1. References list machine language codes as
hexadecimal numbers.

2. The computer only understands the
codes as binary numbers.

3. The BASIC interpreter must receive
decimal numbers, which it then converts
to binary numbers for the computer’s
use.

We could ask you to convert every hexadecimal machine language code to

a decimal value for the BASIC interpreter to use. This conversion is a tedious

and time-consuming chore. The computer could do the conversion much faster

than a human if it was provided with a program to make the conversion. So, we
will include this conversion as part of the BASIC Operating System program.

Come along with us as we design the BASIC Operating System that will
form a bridge to take you from BASIC to machine language programming.

—

BASIC OPERATING SYSTEM MACHINE ™
LANGUAGE

BASIC

We will now begin the construction of our Operating System. Each func-
tional section will be explained. The short machine language program given
previously will be used to show how each section of the Operating System
works. Here is a brief description of the Operating System by sections.

30

First u

We must have some vital information about the machine language program
to be used. We need to know its starting address in memory, and we need to
know how long the program will be (how many memory locations it will use).
In computer terminology, each memory location will hold one byte of informa-
tion. A byte is made up of 8 bits (binary digits). Bits were discussed briefly
earlier in this chapter, and both bytes and bits will be discussed more thoroughly

FIRST

Input the preliminary information

!
SECOND

Enter machine language program and
convert hexadecimal data to decimal

/

THIRD

Print the program and check for
corrections

FOURTH

Check again for additional changes

!
FIFTH

Execute the machine language
program; then return to BASIC

y

SIXTH

Subroutines used by the Operating
System

in Chap. 3. Here is how we get the information for each memory location.

SECTION 1

100 REM * GET MACHINE LANGUAGE INFORMATION *

110 HOME

120 INPUT “STARTING ADDRESS FOR M/L=?"";
130 INPUT “HOW MANY BYTES?”; B
140 INPUT “PRESS RETURN TO ENTER PROGRAM”’; A$

150A =S

37

both inputs
in decimal

Line 110 clears the screen. You input the starting address at line 120. (We
will be using 768 as our starting address.) Line 130 asks for the number of bytes.
(The program we will use has 6 bytes.) The starting address is assigned to the
variable S in line 120. The number of bytes is assigned to the variable B in line
130. The computer waits at line 140 for you to gather your courage before
plunging into the program. After you press the RETURN key, the variable A
is assigned the same value that S was assigned. This is done so that the starting
address is saved as S. Meanwhile A is used as a working address. It changes to tell
the computer which address to POKE successive data into.

Example:

STARTING ADDRESS FOR M/L=?768 <— S=768 from your input
HOW MANY BYTES?6 ~————— B=6 from your input
PRESS RETURN TO ENTER PROGRAM=

<—— A=768 after RETURN is
Second @

pressed

We will next have the Operating System print each address in turn and
wait for you to enter a two-digit hexadecimal code for either an instruction code
from your machine language reference or a byte of hexadecimal data. Remem-
ber, the Operating System will take care of converting the hexadecimal values to
decimal values. It does this in a subroutine located at line 1000. After the con-
version takes place, the decimal result is POKEd into the specified address. The
address is then increased by one at line 290, and the next entry is requested.
This continues until you have entered the entire program.

Address + 1 = Next Address

SECTION 2

200 REM * ENTER PROGRAM IN HEX — CONVERT TO DECIMAL *

210 FORE=1TOB

220 PRINT A;SPC(2); ~—— Address is printed

230 GET H$: PRINT H$; -— Hex data follows

240 GET Us$: PRINT U$ }

250 IF ASC(H$)<48 OR ASC(H$)>70 OR (ASC(H$)>57 AND
ASC(H$)<65) THEN PRINT “1ST DIGIT NOT HEX — TRY
AGAIN": GOTO 220

260 [F ASC(U$)<48 OR ASC(U$)>70 OR (ASC(U$)>57 AND
ASC(U$)<65) THEN PRINT “2ND DIGIT NOT HEX — TRY
AGAIN”: GOTO 220

270 GOSUB 1000 ~«————— Convert to decimal

280 POKE A,D ~<———— Put data in memory
290 A=A+ ~<————— Next address
300 NEXT E

32

Lines 250 and 260 ensure that your data entries are in valid hexadecimal
format. They do not ensure that a valid machine language instruction has been
used. This is up to you, the programmer.

Example:

STARTING ADDRESS FOR M/L=?768
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM

768 m \

Computer waits for the data entry

After all except the last instruction has been entered.

STARTING ADDRESS FOR M/L=7768
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM

768 A9
769 13
770 8D ~<«——Hexadecimal equivalents to the values shown
771 25 in the POKE and PEEK DEMONSTRATION
772 03 program.
773 = ~—
\ This entry will be 60. Then the program will
A increases for proceed to the next section.
“each entry (768,
769, etc.)

Third @

We should now print the program so that you can check it for errors. A
subroutine will be written at line 2000 to do this. We'll assume that it has been
done for now but come back to it later. We also want to allow provision for
making changes in the program in case an error is discovered. Our demonstration
program is very short and can be shown in its entirety on the screen by the
Section 2 routine. Therefore, this section may seem unnecessary to you. How-
ever, your programs will be longer in the future, and some will probably not
fit on the screen. The printing subroutine will display your programs 20 lines
at a time so that you may see 20-line blocks of your program.

When using this section, look through the entire program and note any
changes that you want to make. Changes are made after the complete pro-
gram has been displayed by the subroutine and a RETURN is made to line 420.

33

SECTION 3

400 REM *PRINT M/L PROGRAM AND CHECK FOR CHANGES *

410 GOSUB 2000 ~— Print the program

420 PRINT “IF ANY CHANGES-TYPE ADDRESS”

430 PRINT “IF NOT — TYPE 99”

440 INPUT AD

450 IF AD=99 GOTO 700 -— Execute the program

460 PRINT AD;

470 PRINT “DATA=?"; -— Get the change

480 GET H$: PRINT H$;

490 GET U$: PRINT U$

500 IF ASC (H$)<48 OR ASC(H$)>70 OR (ASC(H$)>57 AND
ASC(H$)<65) THEN PRINT “1ST DIGIT NOT HEX — TRY
AGAIN”: GOTO 460

510 IF ASC (U$)<48 OR ASC(U$)>70 OR (ASC(U$)>57 AND
ASC(U$)<65) THEN PRINT “2ND DIGIT NOT HEX — TRY
AGAIN": GOTO 460

520 GOSUB 1000

530 POKE AD,D -<—Change it

If there are some changes, you should type in the address where the

change is to be made (line 440). That address is then printed followed by the
question DATA=?. You then enter the correct data in hexadecimal format. It
is converted to decimal form by the subroutine at line 1000 and entered into

memory by line 530.

Example:
No changes to be made after the program is printed.

HERE IS YOUR PROGRAM

768 A9

769 13

770 8D

771 25

772 03

773 60

PRESS ANY KEY TO CONTINUE <— We pressed a key here
IF ANY CHANGES—TYPE ADDRESS

IF NOT — TYPE 99

program would then be executed.

If a change is to be made after the program is printed

34

799 We typed 99 here — no changes. The

[HERE IS YOUR PROGRAM

768 A0 ~<————— Error seen here Oh, Ohl
769 13

770 8D

771 25

772 03

773 60

PRESS ANY KEY TO CONTINUE -—— We pressed a key here after
IF ANY CHANGES—TYPE ADDRESS spotting the error.

IF NOT — TYPE 99

7768 - We typed the address
768 DATA=?A9 <————— Then the correct data

We must wait for the next section to see what happens now. @

Fourth @

More than one change may be necessary. So we follow Section 3 with an
opportunity for you to make more changes. This section is only executed fol-
lowing a correction to the program.

SECTION 4

600 REM * CHECK FOR MORE CHANGES *

610 INPUT “ANY OTHER CHANGES (YES OR NO)?”;C$

620 IF LEFT$(C$,1) = “Y” THEN GOTO 420« If yes, make changes
630 GOSUB 2000 ~————— Then print the program again
640 INPUT “ANY OTHER CHANGES (YES OR NO)?”; C$

650 IF LEFT$(C$,1) = “Y” THEN GOTO 420

Line 610 asks if there are any more changes. If the response is NO, the
program is printed again to let you examine it one more time. It then returns to
give you one last chance for another change at line 640. If your answer is NO
again, the program moves on to the execution section.

If your response is YES (or at least begins with Y because of the LEFT$
statement in line 620 and 650), the computer goes back to line 420 for another
change. You will stay in this loop until the program has finally changed to your
satisfaction.

Let’s suppose that you have made two errors in the original entry of your
program.

35

Example:

Olde Myth

768 B9
769 13
770 8C
771 25
772 03
773 60

ﬁ-IERE IS YOUR PROGRAM

PRESS ANY KEY TO CONTINUEm=

To err is human

Do you see the errors?
New Myth

l Computers never err]

You spot the errors and want to make changes. Press any key.

first change —»

second change—»

—

HERE IS YOUR PROGRAM

768 B9

769 13

770 8C

771 25

772 03

773 60

PRESS ANY KEY TO CONTINUE = You pressed a key
IF ANY CHANGES—TYPE ADDRESS

IF NOT — TYPE 99

7768 - You typed the address
768 DATA=?A9 «———————Then the data

ANY OTHER CHANGES (YES OR NO)? YES=<You an-

IF ANY CHANGES—TYPE ADDRESS swered YES
IF NOT — TYPE 99
7770 - You typed the address

770 DATA=?8D <————— Then the data
ANY OTHER CHANGES (YES OR NO)?NO < You typed
NO

The screen then goes blank, and the corrected program is shown.

36

)

HERE 1S YOUR PROGRAM

768 A9

769 13

770 8D

77 25 -<— |t looks ok, so you press a key.

{772 03

773 60

PRESS ANY KEY TO CONTINUE To this last chance,
ANY OTHER CHANGES (YES OR NO)?NO/you type NO

The program then goes on to execute the program in the next section.

Fifth

This section executes the machine language program. It stops at line 710
to allow you to gather your courage once more. Will it run correctly or not? You
press a key and presto! It’s finished, quick as a wink. Boy, that was fast.

SECTION 5

700 REM * EXECUTE THE MACHINE LANGUAGE PROGRAM *
710 PRINT “PRESS ANY KEY TO RUN”: GET A$

~<«———Plenty of space left here to add any custom
. inputs to the program
800 CALLS -<———S is the variable for the starting address.

<«——More space for statements to get results of
. machine language program
900 END

The machine language program is called at line 800. Notice the space left
between line 710 and 800. You can enter additional BASIC statements here to
provide special inputs to your machine language programs if you desire, i.e.,
POKE address, DATA. The space between lines 800 and 900 allows BASIC
statements to read results from your machine language programs, i.e., PEEK
(address).

For example, our demonstration program supposedly loaded the hexa-
decimal value of 13 and put it into memory location 0325 (also a hexadecimal
value). If the program worked correctly, the decimal value 19 (HEX 13) should
have been placed into the memory location whose address is 0325 (lines 771
and 772 of the machine language program). This value in decimal form would be
805 (3 X 16% +2 X 16 + 5). We can find out if it really did this by typing:

PRINT PEEK(805)

after the machine language program has been executed.

37

Example:

(HERE IS YOUR PROGRAM

768 A9
769 13
770 8D
771 25
772 03
773 60
PRESS ANY KEY TO CONTINUE <—You pressed a key ! !
ANY OTHER CHANGES (YES OR NO)?NO\ ?
PRESS ANY KEY TO RUN \You typed NO
You pressed a key ? E] ?

1PRINT PEEK (805)
19

]I\The value PEEKed at is 19. This is the decimal equivalent
of the hexadecimal value 13 that was entered, and it has
been moved to the correct memory location.

Sixth @

Last of all come the subroutines of the Operating System. The first one
converts the hexadecimal data to decimal values for the BASIC interpreter.

SECTION 6A
1000 REM * CONVERT HEX TO DECIMAL *
1010 M=ASC(H$): N=ASC(U$) HEX IN
1020 IF M>57 THEN M=M-55: GOTO 1040
- ouT
1030 M=M-48
1040 IF N>57 THEN N=N-55: GOTO 1060 / \

1060 D=16*M+N
1070 RETURN

Line 1020 checks the ASCII code for the first hexadecimal digit. It will be
one of the values shown in the following table under the heading ASCII. Lines
1020 and 1030 convert the HEX value to its equivalent decimal value.

38

.Examples:

1. A hexadecimal value of 8 has an ASCII code of 56. Therefore, M is not
>57, so line 1030 is executed. The new M = 56 - 48 = 8 (the decimal
equivalent of 8).

2. A hex value of B has an ASCIl code of 66. Therefore, M>57 in line
1020. The New M = 66 - 55 = 11 (the decimal equivalent of B).

The same procedure is followed for the second digit at lines 1040 and 1050.
Here is a table of conversions between hexadecimal, ASCII, and decimal values.

CONVERSION TABLE
Hexadecimal ASClI Converted
digit code decimal value
0 48 0
1 49 1
2 50 2
3 51 3
4 52 4
5 53 5
6 54 6
7 55 7
8 56 8
9 57 9
A 65 10
B 66 1
C 67 12
D 68 13
E 69 14
F 70 15

A two-digit hexadecimal number has the following place values:

first digit/\M N ~second digit
tells how tells how
many 16’s many 1's

In hexadecimal form, M and N may be any HEX digit O through F. Lines 1020
through 1050 convert these hexadecimal digits (0 through F) to their decimal
equivalents (O through 15).

M is now the decimal number of 16’s (0 through 15)
N is now the decimal number of 1’s (0 through 15)

The decimal equivalents are then combined into a decimal number by multiply-
ing 16 times the decimal equivalent of M and adding the decimal equivalent of
N. Line 1060 performs this final operation.

39

Example:

ASCII 67
Original hexadecimal number = C7
, N——ASCII 55
from line 1020 New M =67-55=12
from line 1050 New N =55-48 =7
from line 1060 D = 16x12 + 7 = 199 (the decimal equivalent of C7

hexadecimal)

The print subroutine displays up to 20 lines of your machine langauge pro-
gram at one time. The computer waits for you to examine these lines and press a
key before displaying the next 20 lines of the program. This subroutine may be
entered from the third or fourth section of the program depending on whether
changes have been made. It returns to the same section from which the entry
was made.

Line 2030 initializes counters J to 0 and | to 19 so that 20 addresses and
data values will be displayed on the screen by the FOR-NEXT loop at lines 2200
through 2220.

SECTION 6B

2000 REM * SUBROUTINE TO DISPLAY PROGRAM *
2010 HOME: PRINT “HERE IS YOUR PROGRAM”

2020 PRINT

2030 J=0: 1=19

2040 ON INT((B-1)/20)+1 GOTO 2090, 2080, 2070, 2060, 2050
2050 GOSUB 2200

2060 GOSUB 2200

2070 GOSUB 2200

2080 GOSUB 2200

2090 1=B-1:GOSUB 2200

2100 RETURN

2200 HOME

2210 FORE=TO |

2220 PRINT S+E; SPC(2);: GOSUB 3000

2230 NEXT E

2240 PRINT “PRESS ANY KEY TO CONTINUE”: GET A$
2250 J=1+1: I=1+20

2260 RETURN

Line 2040 uses the number of program bytes to calculate how many blocks of
20 lines must be displayed. It uses the ON-GOTO statement to select the number
of times the block print subroutine will be used (at line 2200). Line 2090 dis-
plays the last block of program lines. This block may not be 20 lines long. There-

40

fore, the upper limit of the FOR-NEXT loop is changed to reflect the number of
program lines left to be displayed. The screen is cleared at line 2200 each time
a new block of lines is to be printed. The program halts at line 2240 so that you
can closely examine the lines for errors. When you press any key, the next block
of lines is displayed.

Last is the subroutine that converts the data from the decimal values
selected by the PEEK (at line 3010) to the hexadecimal values used for data.

SECTION 6C

3000 REM * CHANGE TO ASCII AND DISPLAY *
3010 Y = PEEK(S+E)

3020 H = INT(Y/16)

3030 U = Y-16*H

3040 IF H<10 THEN PRINT H;: GOTO 3060
3050 PRINT CHR$(H+55);

3060 IF U<10 THEN PRINT U: GOTO 3080

3070 PRINT CHR$(U+55)

3080 RETURN

Line 3010 PEEKs at the content of the address being displayed. Lines
3020 and 3030 separate the decimal value into the number of 16’ (H) and the
number of 1’s (U). Lines 3040 through 3070 convert H and U to their ASCII
equivalents for display.

Since we will be using this Operating System quite often in future chap-
ters, it would be to your advantage to enter it in the computer and then save it
on cassette or diskette. Then it can be loaded quickly when needed.

Basically the Operating System allows you to:
1. Enter a machine language program

2. Alter any of your entries
3. Run the machine language program

Instruction in the use of the Operating System will be given as needed in the fol-
lowing chapters.

THE COMPLETED BASIC OPERATING SYSTEM

Here is the completed BASIC Operating System. You should enter it into
your Apple. When you have tried it out to make sure it works correctly, save it
on cassette tape or disk. It will be too tedious to type it in every time you want
to use it.

41

BASIC OPERATING SYSTEM

100 REM * GET MACHINE LANGUAGE INFORMATION *
110 HOME

120 INPUT “STARTING ADDRESS FOR M/L=?";S

130 INPUT “HOW MANY BYTES?”; B

140 INPUT “PRESS RETURN TO ENTER PROGRAM”; A$
150 A=S

200 REM * ENTER PROGRAM IN HEX — CONVERT TO DECIMAL *

210 FORE=1TO B

220 PRINT A;SPC(2);

230 GET H$: PRINT H$;

240 GET U$: PRINT U$

250 IF ASC(H$)<48 OR ASC(H$)>70 OR (ASC(H$)>57 AND
ASC(H$)<65) THEN PRINT “1ST DIGIT NOT HEX — TRY
AGAIN”: GOTO 220

260 IF ASC(U$)<48 OR ASC(U$)>70 OR (ASC(U$)>57 AND
ASC(U$)<65) THEN PRINT “2ND DIGIT NOT HEX — TRY
AGAIN”: GOTO 220

270 GOSUB 1000

280 POKE A,D

290 A=A+

300 NEXT E

400 REM * PRINT M/L PROGRAM AND CHECK FOR CHANGES *

410 GOSUB 2000

420 PRINT “IF ANY CHANGES—TYPE ADDRESS”

430 PRINT “IF NOT — TYPE 99”

440 INPUT AD

450 IF AD=99 GOTO 700

460 PRINT AD;

470 PRINT “DATA=?";

480 GET H$: PRINT Hs$;

490 GET U$: PRINT U$

500 IF ASC(H$)<48 OR ASC(H$)>70 OR (ASC(H$)>57 AND
ASC(H$)<65) THEN PRINT “1ST DIGIT NOT HEX — TRY
AGAIN”: GOTO 460

510 IF ASC(U$)<48 OR ASC(U$)>70 OR (ASC(U$)>57 AND
ASC(U$)<65) THEN PRINT 2ND DIGIT NOT HEX — TRY
AGAIN”: GOTO 460

520 GOSUB 1000

530 POKE AD,D

42

600 REM * CHECK FOR MORE CHANGES *

610 INPUT “ANY OTHER CHANGES (YES OR NO)?”’; C$
620 IF LEFT$(C$,1) = “Y” THEN GOTO 420

630 GOSUB 2000

640 INPUT “ANY OTHER CHANGES (YES OR NO)?”’; C$
650 IF LEFT$(C$,1) = “Y” THEN GOTO 420

700 REM * EXECUTE THE MACHINE LANGUAGE PROGRAM *
710 PRINT “PRESS ANY KEY TO RUN”: GET A$

800 CALLS

900 END

1000 REM *CONVERT HEX TO DECIMAL *
1010 M=ASC(H$): N=ASC(U$)

1020 IF M>57 THEN M=M-55: GOTO 1040
1030 M=M-48

1040 IF N>57 THEN N=N-55: GOTO 1060
1050 N=N-48

1060 D=16*M+N

1070 RETURN

2000 REM * SUBROUTINE TO DISPLAY PROGRAM *
2010 HOME: PRINT “HERE IS YOUR PROGRAM”
2020 PRINT

2030 J=0: I=19

2040 ON INT((B-1)/20)+1 GOTO 2090,2080,2070,2060,2050
2050 GOSUB 2210

2060 GOSUB 2210

2070 GOSUB 2210

2080 GOSUB 2210

2090 1=B-1: GOSUB 2210

2100 RETURN

2200 HOME

2210 FORE=)TOI

2220 PRINT S+E; SPC(2);: GOSUB 3000

2230 NEXTE

2240 PRINT “PRESS ANY KEY TO CONTINUE”: GET A$
2250 J=I+1: 1=1+20

2260 RETURN

43

3000 REM * CHANGE TO ASCII AND DISPLAY *
3010 Y = PEEK(S+E)

3020 H = INT(Y/16)

3030 U = Y-16*H

3040 IF H<10 THEN PRINT H;: GOTO 3060
3050 PRINT CHR$(H+55);

3060 IF U<10 THEN PRINT U: GOTO 3080

3070 PRINT CHR$(U+55)

3080 RETURN

EXERCISES

. The BASIC language uses numbers.
(HEX, binary, decimal)

. When you use the statement:
POKE address, data
both address and data must be numbers.
(HEX, binary, decimal)
. If you executed the following four statements in the Immediate Mode, fill in
what would be printed on the line following the PRINT PEEK statement.
POKE 768,169
POKE 769,19
POKE 770,141
PRINT PEEK(769)

. Explain the function of the CALL statement.

. When using the BASIC Operating System, the addresses for the machine
language program being entered will be printed on the screen using
numbers.

(decimal, HEX, binary)

. The data and instructions which you enter (by the BASIC Operating Sys-
tem) for the machine language program must be entered using
numbers.

(decimal, HEX, binary)

ANSWERS TO EXERCISES

. Decimal
. Decimal
.19

44

4, The CALL statement causes a machine language subroutine to be executed.
The beginning address of the subroutine must be given. (Example: CALL

768 would call a machine language subroutine beginning at the memory
location whose address is 768.)

5. Decimal
6. HEX

45

Chapter 3

Instruction Code Format

BOS

The Central Processing Unit (CPU) of the Apple computer was originally
manufactured by MOS Technology, Inc. At the present time, two other com-
panies (Synertek and Rockwell) also manufacture the CPU. This unit is named
the 6502 microprocessor. It is called a central processing unit because all in-
structions and numerical values are routed there for processing.

The 6502 microprocessor (and hence, the Apple computer), like many
other microprocessors, understands only instructions that are coded in blocks
of eight binary digits, called bytes. Therefore, the biggest hurdle to machine
language programming is to learn to work with information in binary form.

[o 1 1 11 1 0 1]|-<—Blockof8 “bits”

or 1 “byte”
[1]<o0ne bit

<—Two bits (not worth much these days)
<—Four bits (sometimes referred to as a nybble)

<—Eight bits (commonly called a byte)

The Apple uses words that are eight bits in length; that is, it can digest
words whose size is one byte. All instructions and numerical values must be
sent to its central processing unit in this byte size. A typical instruction, shown
below, loads the computer’s accumulator with the one byte of data following
the instruction in a machine language program.

46

LOAD ACCUMULATOR IMMEDIATE

MNEMONIC CODE BINARY CODE
(abbreviation)
LDA 10101001

Don’t let the computer terminology throw you. The accumulator is similar
to a memory location that is used in special ways we will discuss later on. We are
just introducing it here to show the format of an instruction.

The computer is composed of many functional parts that we will intro-
duce as needed to explain the operations taking place. The central processing
unit of the Apple is a 6502 microprocessor. The following block diagram shows
the “parts” we are presently concerned with.

6502 MICROPROCESSOR MEMORY

Instruction decoder

Accumulator

Other controls and
registers

The instruction decoder of the 6502 “reads” the instruction and decodes
it. Most instructions involve the accumulator (discussed later in this chapter) as a
center for moving and manipulating data. Memory is separate from the 6502
microprocessor.

NUMBER SYSTEMS

You can see that entering many binary-coded instructions would be tedi-
ous. Since there are only two symbols (O and 1), the binary representation of
numbers is quite long. Most computers, including the Apple, have the ability to
accept a shorthand representation of binary. This shorthand is the hexadecimal
number system (which we will often refer to as HEX). Four binary digits may be
represented by one HEX digit. Thus, our 8-bit instruction may be represented by
a 2-digit HEX number by breaking the byte (8 bits) into two parts (nybbles).

47

Binary Number

01111101

LN

0111 =7HEX 1101 =D HEX

Binary Two Nybbles HEX
Therefore: 01111101 =0111 1101 = 7D

~

The hexadecimal number system has 16 symbols (0,1,2,3,4,5,6,7,8,9,A,B,
C,D,E,F). The relationship of decimal, binary, and HEX values is shown in the
following table.

Decimal Binary HEX

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
111

—
C VWO P WN=O

— — — —
H WD =
TMOUO®@™WP»POVOIAATULDWN=O

—_
(9]

o}

00
ooo <ICALL me 15, CALL me 1111, or CALL me F — they all
0000 represent the same thing.
00000

To give the table meaning, let’s take a look at the binary system. Each place
value in the binary system is a power of two, just as each place value in the
decimal system is a power of ten. Two is called the base of the binary system,
and ten is called the base of the decimal system. If we look at the place values
of the binary numbers 0000 through 1111, we can attach more meaning to
them.

Binary Places
Decimal
23 2% 2 2° Equivalent
0 0 0 1 0+0+0+1 =1
0 0 1 0 0+0+2+0 =2
0 1 0 0 0+4+0+0 = 4
1 0 0 0 8+0+0+0=8

Using combinations of these place values, we may obtain any decimal value from
0 through 15 or any HEX value from O through F.

Examples:
0101 =22 + 2°= 4 + 1 = 5 decimal and also 5 HEX
1010 =23 + 2! =8+ 2 =10 decimal which is A HEX
1100 = 23 + 22 = 8 + 4 = 12 decimal which is C HEX
1101 =23 +22 +2° =8 + 4 + 1 = 13 decimal which is D HEX

Let’s now take a closer look at how we may express any 8-bit binary num-
ber by two HEX digits. We saw earlier that the highest HEX digit (F) corres-
ponds to the four-bit binary value 1111. The next higher binary value is 10000.
The one is in the 2* place, which equals 16. Therefore, we have one 16 and
nothing else. This can be expressed by the HEX value 10, which means one 16
and no 1’s. There is a direct relationship between the upper 4 bits of an eight-
bit binary number and the sixteen’s place digit of a HEX number.

Binary Places
HEX value
27 [28 | 25 | 2* 76"
ojo] o0} 1 2*=16
ojlof|l1]o0 2 25 = 2%16 =32
o|l1/0]o0 4 2 =4%16 =64
1/10[|0]0 8 27 =8%16=128

49

Next look at the binary place values of the complete 8-bit number.

Binary Places

Decimal HEX
Equivalent Equivalent

N

27 26 25 2% 28 22

0+0+0+0+0+0+0+1 =1
0+0+0+0+0+0+2+0 = 2
0+0+0+0+0+4+0+0 = 4
0+0+0+0+8+0+0+0 =8
0+0+0+16+0+0+0+0 = 16
0+0+32+0+0+0+0+0 = 32
0+64+0+0+0+0+0+0 = 64 40
128+0+0+0+0+0+0+0 = 128 80

0O 0000 OO0O
O =00 0O O0OO0O
OO =000 O0CO
C OO -—=000O0
C OO0 =000
CO OO0 —=00
QOO0 OoOC =0
C O O0OO0OOCCOO =

BSOOAM—'

Using combinations of all eight bits, you may obtain any decimal value
from O through 255, or any HEX value from O through FF. If we break an 8-bit
binary number into two 4-bit parts, each part may be represented by one HEX
digit.

Examples:
BINARY 01111101 64+32+16+8+4+1 = 125 in decimal
~"SPLIT-BINARY 0111 1101

Broken (split) HEX 7D 7*16+13 = 125 in decimal
into
;‘;VSS BINARY 11000011 128+64+2+1 =195 in decimal

SPLIT-BINARY 11000011
HEX C3 12*¥16+3 =195 in decimal

BINARY 10101010 128+32+8+2 =170 in decimal
SPLIT-BINARY 1010 1010
HEX AA 10*¥16+10 = 170 in decimal

Instruction manuals for machine language quite often list the instruc-
tion codes in both binary and HEX forms. Our BASIC (to machine language)
Operating System will use HEX format for entering the instructions of ma-
chine language programs. Since BASIC doesn’t understand HEX numbers, the
operating system will convert them to decimal numbers for BASIC and to
binary numbers for the computer. Even though the BASIC Operating System
was discussed in Chap. 2, we believe the data-entry section should be repeated
here.

Instructions are input in lines 200-300 of the BASIC (to machine lan-
guage) Operating System as hexadecimal numbers.

50

SECTION 2

200 REM * ENTER PROGRAM IN HEX — CONVERT TO DECIMAL *

210 FORE=1TOB

220 PRINT A;SPC(2); -«————Address is printed

230 GET H$: PRINT H$; | . —HEX data follows

240 GET U$: PRINT U$

250 IF ASC(H$)<48 OR ASC(H$)>70 OR (ASC(H$)>57 AND
ASC(H$)<65) THEN PRINT “1ST DIGIT NOT HEX — TRY
AGAIN": GOTO 220

260 IF ASC(U$)<48 OR ASC(U$)>70 OR (ASC(U$)>57 AND
ASC(U$)<65) THEN PRINT “2ND DIGIT NOT HEX — TRY
AGAIN": GOTO 220

270 GOSUB 1000 ~<—————Convert to decimal

280 POKE A,D -<«——Put data in memory
290 A=A+ ~<——— Next address
300 NEXTE

The HEX-to-decimal conversion takes place in the subroutine at lines
1000-1070 of the operating system program. The BASIC interpreter then
changes the decimal numbers to binary equivalents for the computer.

1000 REM *CONVERT HEX TO DECIMAL*
ASCIl codes— 1010 M=ASC(H$): N=ASC(U$)

in decimal 1020 IF M>57 THEN M=M-55: GOTO 1040

(M,N) 1030 M=M-48

Conversion—> { 1040 IF N>57 THEN N=N-55: GOTO 1060
1050 N=N-48

1060 D=16*M+N
1070 RETURN

b el

DECIMAL

BLOCK DIAGRAM OF INPUTS

HEX HEX TO DECIMAL TO USES THE

| DECIMAL [™| BINARY ™| BINARY
Keyboard Operating BASIC Computer
Input System Interpreter

Ours is on pages 40 and 41

51

The computer handles data in 8-bit blocks called bytes. Therefore, one
byte of data is limited to the binary value 11111111 (FF hex or 255 decimal).
However, by combining two bytes of data, much larger values may be handled.
The computer uses this method to access locations in its memory.

When a two-byte number is used, one byte is referred to as the Least
Significant Byte (LSB). The other is referred to as the Most Significant Byte
(MsB).

Example:
MSB (Most Significant Byte) LSB (Least Significant Byte)

27 26 25 2% 23 22 ot 2O 27 26 25 2% 28 22 0 20

1 0 0 0 1 0 O 1 o1 0 0 O 1 1 1

Don’t confuse the Most and Least Significant Bytes with the most and least sig-
nificant bits. Each byte has an msb (most significant bit) and an Isb (least signifi-
cant bit).

MOST SIGNIFICANT BYTE LEAST SIGNIFICANT BYTE

27 26 25 2% 23 2% 91 20 [27 26 25 4 23 92 ot 0

1 06 0 0 1 0O 1T({[O 1 O O0 O 1 1 1

most least most least
significant significant significant significant
bit bit bit bit

To use a two-byte number, you consider the Most Significant Byte as an exten-
sion of the Least Significant Byte. The place values of the Least Significant Byte
were assigned powers of two from O through 7.

LSB

27 26 25 2% 23 22 ot 0

o1 o o O 1 1 1 =64 +4+2+1=71(decimal)

The place values of the Most Significant Byte are assigned the next higher
powers of two (8 through 15).

52

MSB

215 214 213 212 21 1 210 29 28

1 0 0 0 1 0 0 1] =32768+2048 +256=135072
(decimal)

The decimal value resulting from the combined bytes (considered as one num-
ber) is:

21 5 21 4 21 3 21 2 21 1 21 0 29 28 27 26 25 24 23 22 21 20

it 0 o0 o0 1 0 o 1T 01T 0 O0 0 1 1 1

In decimal: 32768 + 2048 + 256 + 64 + 4+ 2+ 1 =35143

Split into 4-bit parts:
1000 1001 0100 0110 <« This binary value
-~ - - == is equivalent to
HEX digits 8 9 4 6 <«— this HEX value

HEX
format: | yiop | LsB 163 16> 16' 16°
89 | 46 |=| 8 9 4 7 |—»8%4096=32768
+ 9%256 = 2304
+4%16 = 64
FTH =T
35143
(decimal)
ACCUMULATOR

The accumulator is a register (a storage place similar to a memory loca-
tion) in which data is placed. It is used as a temporary storage area when mov-
ing data from one memory location to another. Arithmetic and logical opera-
tions on data also take place in the accumulator. Thus it is frequently used, and
many of the 6502 instructions involve it. Remember, the Apple computer uses
the 6502 central processing unit. The instructions are fixed in the 6502; that is,
each instruction has a unique, unchanging machine language code.

The accumulator also holds one byte of data.

53

1 0 0 1 1 1 0 0

27 26 25 ¢ 3 2 ot 0

The necessity for two-byte values becomes apparent when an instruction
is used to acquire data from a memory location. If you want to load data into
the accumulator from memory, the following instruction could be used.

One instruction for putting a number into the accumulator was shown
previously. It loads the accumulator with. a number which immediately follows
the instruction.

Example:

Binary HEX <——This is the value typed in
Value Value

10101001 A9 -«———~Load the accumulator
00001101 13 <«——with HEX value 13

The two bytes (each occupying a separate memory location) provide:

First: the instruction, Load the accumulator (A9)
Second: with the HEX value 13

The next instruction introduced shows a second way to put a number into
the accumulator. It obtains the number to be loaded from a specified memory
location. Even though the mnemonic code for this instruction is LDA (the same
as the one referred to at the beginning of the chapter), the HEX value represent-
ing this instruction is different.

When you are loading the accumulator from a specified memory location,
the LDA instruction has a HEX code of AD. Even though this means nothing to
you, it is a specific instruction to your Apple. The memory location is specified
following the instruction. Notice that the two bytes necessary for specifying
the address of the memory are given in reverse order. This may seem ridiculous
to you. But to the computer, it is entirely logical. The Least Significant Byte
is stored in the lower address of memory, and the Most Significant Byte is stored
in the higher memory address.

Memory | HEX | Mnemonic

Address Value Code Operand Remarks
768 AD LDA 0325 Load the accumulator from
769 25 memory location 0325
770 r 03 } T\ (HEX)

|
Instruction \\Reversed order for address

54

This is an example of a three-byte instruction.
1. The instruction is given in the first byte.
2. The LSB of the memory appears as the next byte.

3. The MSB of the memory appears as the last byte.

When the computer executes this instruction, the data in memory location
0325 is copied into the accumulator. This one change occurs:

Accumulator Memory 0325
BEFORE: nnnmMm 10111100
AFTER: 10111100 10111100

The value in the memory location remains unchanged and is copied into
the accumulator. Operations can be performed on the value in the accumulator.
The results can then be transferred to another location if desired. The important
thing to remember is that most of the computer’s action takes place in the
accumulator. Therefore, many of the 6502 instructions involve this useful
register.

Data from the accumulator can be copied into some memory location
with a store instruction such as:

HEX | Mnemonic
Value Code Operand | Remarks
Instruction = 8D STA 0326 | Store the value contained
Memory 26 in the accumulator into
Location 03 memory location 0326
HEX

This is another three-byte instruction. In general, most instructions that
refer to a memory location require three bytes. Exceptions will be noted later.

When the computer executes this instruction, the data in the accumulator
is copied into the specified memory location. This change occurs:

* Accumulator Memory 0326
BEFORE: 10011001 nnnmmMm
AFTER: 10011001 10011001

The value in the accumulator stays the same, but that value is copied (or writ-
ten) into memory location 0326 as well. You can see that with instructions like
LDA and STA, the accumulator is going to be a busy place.

55

It will also be important for you to keep track of what memory locations
are being used for different operations. Remember, we are using memory loca-
tions 0300 HEX upward (see memory map in Chap. 2). Whenever data is stored
in a memory location, the data that was previously there is lost.

Example:
Suppose that the following values are in the memory locations shown.

Memory (Hex) Content

0325 19
0326 24
0327 00

This machine language program is then executed.

768 AD Load accumulator from
769 25 memory location 0325
770 03

now in accumulator

771 8D Store accumulator in
772 27 meétnrory location 0327
773 03

These machine lan-
guage instructions
work in a similar
way to the two
consecutive BASIC
instructions:

Memory locations now
0325 19
0326 24
0327 <+——This has been changed

774 AD Load accumulator from
775 26 memory location 0326.
03 '

200 LET A=19
210 LET A=24

now in accumulator

8D Store accumulator in
memory location 0327

. 19
Program Memory locations now
in these 0325 19
decimal i . 0326 24
memory instructions | 03, 19 is now gdne

locations

56

INSTRUCTIONS IN MEMORY

Programs must be put into memory before they can be run. Even your
BASIC programs occupy memory space. Your BASIC interpreter takes care of
BASIC program memory assignments for you, and you are unaware of the exact
locations of BASIC instructions. However, you must assign memory locations to
your machine language programs. Each instruction byte and each data byte must
be assigned specific locations. Each byte occupies one memory location.

Example:
Memory Data or Instruction
Location Byte Remarks
0300 AD Load accumulator
0301 25 from memory location
* 0302 03 0325
0325 2B Data to be loaded

Some instructions have many forms. This load instruction differs from
that used in “Memory Use” in Chap. 2 in that a value is loaded from a memory
location rather than from the byte following the instruction.

We will use memory locations 0300 through 03FF (HEX) for our machine
language programs. This area of memory is not used by the Apple Operating
System nor by the BASIC interpreter. Therefore, it is safe for our use.

We'll use our BASIC Machine Language Operating System to POKE
machine language instructions and data into this area of memory.

USE OF THE BASIC-M/L OPERATING SYSTEM

To demonstrate the use of the Operating System, we must first decide on
the machine language program that we want to run. Your first effort will be a
very short program that places some data into the accumulator and then moves
it from there to a memory location.

This program accomplishes the same thing as the BASIC instruction:

LET A=19 -«———This stores 19 in location named A

*Notice again that the memory location 0325 is entered in the program LSB
first, then MSB. This may seem backwards to you, but it is quite normal for the
computer. The Most Significant Byte (MSB) is now stored in a higher memory
location than the Least Significant Byte (LSB).

57

The LET statement merely stores the value 19 into a memory location assigned
by the BASIC interpreter.
The machine language equivalent takes two instructions:

LDA (load accumulator with data)
STA (store accumulator’s contents in memory)

1. We first /oad the accumulator with the data.
The 6502 instruction for loading the accumulator with data that immediately
follows is made up of two bytes.

A9 <«——First byte
XX <——Second byte

A9 is the machine language code telling the computer to load the data
which follows into the accumulator.

XX is a two-digit HEX value that is to be loaded.

The mnemonic code for the instruction and the Operand are usually added to
give some meaning to the coded instruction. The actual instruction is called
the Operation Code (Op Code for short).

Example:
Explains the codes

Op Code /M \

nemonic Code Operand

Two_> {A9 LDA 1k/the data
bytes |13
\ his says LoaD Accumulator

This tells what value to load

The mnemonic code is just the abbreviation for the instruction. The operand
is the data or other item used. The operation code is the HEX code for the
instruction to be performed or the data to be used. In this case it is the in-
struction, Load Accumulator with immediate data.

A list of machine language instructions used in this book is given in Appen-
dix A-2. A complete list of 6502 instructions is given in Appendix D.
The instruction actually consists of two bytes:

A9 (the instruction)
XX (the HEX data to be loaded)

In our demonstration, we will load the value 19 (HEX=13). Therefore, the
two-byte instruction will be:

A9
13

58

In the different number systems that we have discussed:

Binary Split-binary HEX
10101001 1010 1001 A9
00010011 0001 0011 13

These values are entered using
the BASIC Operating System.

2. We will then store the data in the memory location whose address is 0325
(HEX).
The 6502 instruction necessary to do this is:

STORE ACCUMULATOR ABSOLUTE

OPERATION CODE MNEMONIC OPERAND
8D STA memory
This instruction takes three bytes:
8D (The instruction)
25 (The least significant memory byte)
03 (The most significant memory byte)

25 is placed in three
03 successive memory locations

8D } The instruction

3. We will then return from the machine language program to the operating
system.
The 6502 instruction used is:

RETURN FROM SUBROUTINE
OPERATION CODE MNEMONIC OPERAND

' i {

60 RTS none
This is a one-byte instruction.

60 (The instruction)
It performs the same function as the BASIC instruction:
RETURN
We noted on the Apple memory maps (Chap. 2) that memory locations

768-1023 (decimal) would be used for machine language programs. That part of
the map is shown here for reference.

59

Decimal HEX

Address Equivalent
768 0300
769 0301
770 0302
771 0303
772 0304

1022 03FE
1023 03FF

Our first program: will begin at memory location 0300 HEX. We must tell
our Operating System this location as a decimal value. The addresses are POKEd
into the computer using decimal numbers that BASIC understands. But the in-
structions and data must be POKEd in as HEX numbers, which the computer
will use in their binary form.

163 | 16% | 16 [16°

0 3 0 0 =3 X 16% = 3 X 256 = 768 decimal

This is the address where the first instruction of the program will be entered. We
will also have to supply the Operating System with the operation codes for each
address.

Address | OP Code Remarks
768 A9 LDA with
769 13 data 4)
770 8D STA
771 25 | Memory (LSB)
772 03 Memory (MSB)
773 60 RTS

Notice: The program has 6 bytes (we will have to tell the
Operating System this fact).

60

Here is a step-by-step description of how to use the Operating System
to enter and run the above program.

1. Enter the Operating System (see Chap. 2). This can be done from the
keyboard, or from cassette or disk if you have previously saved the

program.

2. Type: RUN (and press RETURN)

(STARTING ADDRESS FOR M/L=7m

3. Type: 768 (and press RETURN)

STARTING ADDRESS FOR M/L=?768
HOW MANY BYTES?=

4. Type: 6 (and press RETURN)

STARTING ADDRESS FOR M/L=2768
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM=

5. Press the RETURN key

STARTING ADDRESS FOR M/L=?768
{ HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM

768 = Computer supplies
\/ first address

Now you type in the program. You do not have to press the RETURN key
after each entry. The computer will automatically print the next address follow-
ing your two-digit entry. If you make a mistake, go right on to the next entry.
You will be able to correct any errors when the program has been entered
completely.

6. Type: A

STARTING ADDRESS FOR M/L=2768
HOW MANY BYTES?6
PRESS RETURN TO ENTER PROGRAM

768 Am 1st digit of
\/1st address
67

7. Type: 9

FI'ARTING ADDRESS FOR M/L=2768
HOW MANY BYTES?6

PRESS RETURN TO ENTER PROGRAM
768 A9 <«—————1stentry complete

769 = Computer prints next
\/ address

Since you don’t have to press RETURN after each keystroke, we will include
both keystrokes for each address in each step from now on.

768 A9

Computer You type this
displays this but~

NO, NO!

The GET instruction does not require you to press RETURN. If you do
press RETURN, the GET instruction interprets it as one of your characters, and
the Operating System will display:

768

1ST DIGIT NOT HEX — TRY AGAIN
768 m

Getting back to the program,

8. Type: 13

STARTING ADDRESS FOR M/L=?768
HOW MANY BYTES?6

PRESS RETURN TO ENTER PROGRAM
768 A9

769 13

770 =

62

9. Type: 8D

10. Type: 25

11. Type: 03

12. Type: 60

STARTING ADDRESS FOR M/L=2768
HOW MANY BYTES?6

PRESS RETURN TO ENTER PROGRAM
768 A9

769 13

770 8D

771 =

STARTING ADDRESS FOR M/L=2768
HOW MANY BYTES?6

PRESS RETURN TO ENTER PROGRAM
768 A9 '

769 13

770 8D

771 25

772 =

(" STARTING ADDRESS FOR M/L=2768
HOW MANY BYTES?6

PRESS RETURN TO ENTER PROGRAM
768 A9

769 13

770 8D

771 25

772 03

773 =

(HERE IS YOUR PROGRAM

768 A9

769 13

770 8D

771 25

772 03

773 60 :

IF ANY CHANGES—TYPE ADDRESS
IF NOT — TYPE 99 ’

m

63

Before going on, let’s compare this machine language program with its
equivalent in BASIC. These six machine language instructions perform a func-
tion very similar to two BASIC instructions:

BASIC MACHINE LANGUAGE
100 LETA =19 768 A9 LDA13
110 RETURN \ 769 13
770 8D STA 0325

771 25
772 03

773 60 RTS

The machine language program loaded the accumulator with the HEX
number 13 (19 decimal). It then stored it in a memory location. The BASIC
statement LET A = 19 does the same thing. It stores the value named by the let-
ter A into memory. The machine language instruction RTS (ReTurn from Sub-
routine) performs the same function as the RETURN instruction in BASIC.

Study the program to make sure all entries are correct. If you made an
error in your entries, you would type in the address where the error was made.
The computer would then display:

IF ANY CHANGES—TYPE ADDRESS

IF NOT — TYPE 99 Suppose:

7771 DATA=" Error seen at
address 771

You would then type in the correct data (two digits).

IF ANY CHANGES—TYPE ADDRESS

IF NOT — TYPE 99

7771 DATA=?25 ~+— Correct data entered
ANY OTHER CHANGES (YES OR NO)?

You would then type YES or NO. If you type YES, the computer would
again ask for the address and data. The process is repeated until you give a nega-
tive reply (NO more changes). The computer then prints the corrected program
and asks if there are any more changes. On the last negative reply to changes, the
computer displays:

I PRESS ANY KEY TO RUN=

64

You press any key, and the machine language program is run. You will immedi-
ately see the prompt and blinking cursor. My, that machine language is fast!

t’RESS ANY KEY TO RUN

Did our machine language program really run? How can we find out?
BASIC has an instruction named PEEK which will let you see what is in a
specified memory location. If you tell it:

325 HEX (the location where the
program stored the value, 19

PRINT PEEK (805)

it will print the value that is stored in memory location 805 (decimal).

Since the M/L program was supposed to put the HEX number 13 (decimal
19) into memory location 0325 HEX, we can PEEK at that location to see
what’s there.

0325 HEX = (3 X 256)+(2 X 16)+(5 X 1) =768 + 32 + 5 = 805 decimal
Type: PRINT PEEK(805) and press RETURN

Presto! There it is!

JPRINT PEEK(805)
19 - It really worked!
1L

You can add a line to the Operating System between lines 800 and 900 to
print the value in memory using the PEEK statement.

810 PRINT PEEK(805)

This part of the operating system (lines 800-900) can be changed to custom fit
each program you run. Add line 810 to the Operating System for your next
program.

The first program loads data into the accumulator and then stores it in
memory. Practically all programs use this type of operation to move data from
place to place within the computer. |

65

The accumulator is also used in performing operations on numbers. One
such operation shifts each bit in the accumulator left one place. This operation is
abbreviated ASL (Arithmetic Shift Left). Its OPeration CODE (OP CODE) is

OA.

Example:

Accumulator’s contents

before the shift instruc- 00010011 - 16+2+1 = 19 (decimal)

tion is executed

is lost
Accumulator’s contents

e

after the shift instruc- 00100110 32+4+2 = 38 (decimal)

tion is executed

\._ Zero is automatically

placed in the last bit

You can see that an ASL instruction is one way to multiply a number by
two, since the value of each bit is doubled.

You can now load a number into the accumulator and shift each bit one
place to the left (or multiply it by two). You can then store the result in a mem-
ory location. The PEEK statement, which you have added at line 810 in the
Operating System program, will then print the result stored in memory.

Use the Operating System to load this program. After all 7 bytes have been
entered, the display should show:

768
769
770
77
772
773
774

.

A9
13
0A
8D
25
03
60

HERE IS YOUR PROGRAM

~<— Load Accumulator with HEX value 13
(19 decimal) :

-«— Shift bits left 1 place

~— Store results in memory (0325)

~— Return to Operating System

IF ANY CHANGES—TYPE ADDRESS
IF NOT — TYPE 99

When you type in 99, the program will immediately show the value that
has been stored in memory 0325 HEX (805 decimal). Remember that the value
will be displayed as a decimal number. It should be 38. Here is the display when
the program has been run:

.66

mERE IS YOUR PROGRAM

768 A9

769 13 <«——— (13 HEX =19 decimal)
770 OA

771 8D

772 25

773 03

774 60

IF ANY CHANGES—TYPE ADDRESS

IF NOT — TYPE 99

799
PRESS ANY KEY TO RUN
38 < Answer comes back in decimal form from
the BASIC instruction: PRINT PEEK(805)
Im
__

Since the value in the accumulator is doubled each time the ASL instruc-
tion is executed, you can imagine what would happen if we executed ASL twice.
The value would be doubled and then redoubled (or multiplied by four). Try it
by adding a second ASL instruction to the program above. After you have en-
tered the revised program and executed it, your display should look like this
(remember, the program will now be 8 bytes long).

HERE IS YOUR PROGRAM

768 A9

769 13

770 OA } /Two ASL instructions
771 OA

772 8D

773 25

774 03

775 60

IF ANY CHANGES—TYPE ADDRESS

IF NOT — TYPE 99

799

PRESS ANY KEY TO RUN

76 (19 times 4 = 76)

t

67

Here is what happened:

00010011 -«— Original value in accumulator
ASL executed:
00100110 -~ Shifted left once
ASL executed again: '
01001100 -«— Shifted left twice, which is 4 times 19

Result: 64 +8+4 =76

We will cover the arithmetic capabilities in more detail later in the book.
Remember that the accumulator can hold only eight bits of data. Memory loca-
tions also hold only eight bits. If we shift left too many times, the number will
be shifted right out of the accumulator. We will have to find new techniques to
take care of big numbers.

Arithmetic and logic functions are performed by the Arithmetic Logic
Unit of the 6502 microprocessor.

6502 MICROPROCESSOR

Instruction decoder

Accumulator

Arithmetic Logic Unit

You have discovered that you can load numbers into the computer, change
the values that you put in, move the values within the computer, and print out
the results. In the next chapter, you’ll discover something far more fascinating.
You'll find out how to display graphics on the video display.

SUMMARY

You’re off to a good start. In this chapter, you have learned:
1. That the computer only understands binary instructions and data

2. How to convert between decimal, binary, and HEX values
3. That memory locations hold one byte or eight bits of data

4. That the accumulator (a special register similar to a memory location) is used
to conduct most computer operations

68

'5. To use machine language instructions:

a. LDA (LoaD Accumulator) used to load the accumulator with an immedi-
ate value. Its OP CODE (A9) is followed by one byte of data which is
loaded into the accumulator.

Example: A9 <«— OPCODE
13 -<— data to be used

b. STA (STore Accumulator) used to store the value in the accumulator in an
absolute memory location. Its OP CODE (8D) is followed by the two-byte
address. '

Example: 8D -— OPCODE
25 < least significant byte of address
03 —<— most significant byte of address

c. RTS (ReTurn from Subroutine) used to cause a return from a machine
language program (or subroutine).

Example: 60 -— OPCODE

d. ASL (Arithmetic Shift Left) used to shift each bit in the accumulator one
place to the left. It doubles the value in the accumulator.

Example: 0A —+— OPCODE

6. To put all these instructions into a machine language program, entered and
controlled by the BASIC Operating System

Although you have only touched on a few machine language instructions, you
were able to understand and use a machine language program.

Most of the instructions that you will be using have several forms (or
modes). They are shown in Appendix A. The ones that you will be using most
are Immediate, Absolute, Implied, and Zero Page.

You have used LDA in the Immediate Mode. In this mode, the data to be
used immediately follows the OP CODE. You have also used the STA instruction
in the Absolute Mode. In this mode, the complete (or absolute) address follows
the OP CODE of the instruction. This address is given with the Least Significant
Byte first, followed by the Most Significant Byte. The’ Implied Mode was used
for the RTS instruction. Its function is implied by the instruction. Therefore, no
address or data is needed. '

These modes will become more familiar to you as they are used in future
chapters.

69

EXERCISES

Fill in the blanks in the following exercises.

1. BASIC uses numbers, but the computer only

(decimal, binary) '

understands numbers.
(decimal, binary)

2. One HEX digit can be used to represent how many binary digits?
3. Give the HEX and decimal equivalents of these binary numbers.

Binary HEX Decimal
1001
1101
01010111
4. Data is copied into the accumulator from memory with a
instruction. (load, store)
5. Data is copied into memory from the accumulator with a
instruction. (load, store)
6. Explain what the execution of the following instruction would do.
Address Op Code Remarks
77 8D STA
772 40 memory
773 03
7. The BASIC Operating System displays values for
(decimal, HEX)
program addresses and values for Op Codes and data.

(decimal, HEX)

8. Fill in the results that would be placed in memory location 0333 by this

program.
768 A9 LDA2C
769 2C
770 0A ASL
771 8D STA 0333
772 33
773 03
774 60 RTS

hex (in memory) decimal equivalent

9. Tell what each of the following instructions accomplishes when executed.
a. A9 LDA 15
15

70

0 N o un oA

b. 8D STA 0310
10
03

c. 0OA ASL

d. 60 RTS

ANSWERS TO EXERCISES
. Decimal; binary
4
Binary HEX Decimal
1001 9 9
1101 D 13
01010111 57 87
Load
. Store
. Store the value contained in the accumulator in memory location 0340.
. Decimal; HEX ‘ _
. 58 HEX (in memory); 88 decimal equivalent

(0010 1100 shifted left = 0101 1000 = 58 HEX

58 HEX = 5 X 16 + 8 = 88 decimal)

LDA 15 loads the accumulator with the value 15 (HEX).

. STA 0310 stores the accumulator’s content into memory location 0310.
ASL shifts each bit in the accumulator one place to the left.

. RTS causes a return from the subroutine where it is used.

oo ow

71

Chapter 4

Simple Graphics

BOS

In Chap. 3, you found out how to load a number into the accumulator,
perform an operation on it (shift the bits left), and store it into memory. In this
chapter, you'll learn how to plot points and draw lines on the screen. You’ll
use some of the built-in capabilities of the Apple machine language monitor.
You'll take advantage of some subroutines that are permanently stored in
Read Only Memory (ROM). This will save you a lot of work, since these routines
will be used over and over again in future programs.

You have no doubt used subroutines in BASIC many times. A machine
language subroutine works the same way, but the instructions are different, of
course. In BASIC, you used GOSUB 2000 to tell the computer to go to the sub-
routine located at line 2000. Then the last line of the BASIC subroutine RE-
TURNed the computer to the main program.

In machine language, the instruction used is:

JSR XXXX
S N——
Jump to 4 ! HEX memory address
SubRoutine where subroutine is
located

The machine language OPeration CODE for JSR is 20.
Example of JSR as used in a program:

779 20 <«— JSR F800 Jump to subroutine
780 00 at memory location
781 F8 F800 (hex)

The last instruction used in the subroutine must be a return to the main
program. In machine language, this would be:

RTS (ReTurn from Subroutine)

If you are using one of Apple’s built-in subroutines, the RTS instruction is
already there, and you don’t have to worry about it.

72

PLOTTING A POINT ON THE SCREEN

We will use three subroutines in our program to plot a point, the beginning
step in learning to use graphics. If you have used Applesoft BASIC, you know
that several program steps are necessary to do this. In planning our machine
language program, we khow that we must:

1.

5.
6.

Clear the screen

2. Set the Graphics mode
3.
4, Select the screen position of the point to

Select the color to be used

be plotted
Plot the point
Return to BASIC Operating System

BASIC Equivalent Statements

HOME

GR

COLOR =15
C=5

R=32

PLOT C,R
RETURN

Here is a sample program to plot a point. Each function of the program is
presented in a block that is numbered according to the above plan. The com-
puter prints the first column. You type in the second column.

1. REMARK ** CLEAR THE SCREEN **

768 20 <« JSR FC58
769 58
770 FC

REMARK ** SET GRAPHICS MODE **

771 20 < JSR FB40
772 40
773 FB

. REMARK ** SELECT COLOR **

774 A9< LDAFF
775 FF

776 85 <« STA 0030
777 30

. REMARK ** SCREEN POSITION **

778 A0+ LDY 05
779 05

780 A9« LDA 20
781 20

REMARK ** PLOT THE POINT **
782 20 = JSR F800
783 00
784 F8

REMARK #** RETURN TO BASIC **
785 60 <« RTS

73

Jump to the subroutine
at FC58. A built-in sub-
routine

Jump to the subroutine
at FB40. Another built-
in subroutine

Load accumulator with
color value =15 or F in
HEX (both bytes).
Store in memory at lo-
cation 0030

Load the Y register
with column number, 5

Load the accumulator
with row, 32 (20 HEX)

Jump to the subroutine
at F800. Another built-
in subroutine.

Return to BASIC Oper-
ating System

Notice the store instruction (85 HEX) at memory location 776. Ordinar-
ily, a load from or store to a memory location requires two additional bytes to
give the full memory address. The 6502 central processor unit recognizes the
code 85 as a special instruction that will supply only the Least Significant Byte
of the address. The computer “understands” that the Most Significant Byte of
these special Zero Page instructions is zero. Hence, they are called Zero Page in-
structions. They can be executed faster than those where a two-byte address is
needed. .

The operation of this program is dependent upon the correct performance
of the subroutine at location F800 that plots the point. Steps 3 and 4 of the pro-
gram supply values that must be used by the point-plotting subroutine.

STEP 3 — Puts the color value (0-15) into memory location 0030. Note that this
store instruction STA uses only the last part of the address (the first part
00 is not needed). The color value is given at program location 775. The
color values are entered as HEX numbers O through F (0 through 15 in
decimal numbers). The correct HEX digit must be entered in both bytes.

Example:

Orange: A9 LDA 99
99
85 STA 30 9 in both
30 HEX digits

The color values are given in the following table.

COLOR TABLE

Color HEX Color
Value Value

0 0 Black

1 1 Magenta

2 2 Dark blue

3 3 Light purple

4 4 Dark green

5 5 Grey

6 6 Medium blue

7 7 Light blue

8 8 Brown

9 9 Orange

10 A Grey

11 B Pink

12 C Green

13 D Yellow

14 E Blue/green

15 F White

74

When the PLOT-THE-POINT subroutine is executed, it looks for the color
value in memory location 0030. Therefore, the machine language program must
store the color value there (which it does at program locations 776 and 777).

The subroutine must also be told where to plot the point on the video
screen. This information is supplied in Step 4 of the program.

STEP 4 — Provides the column and row where you desire the point to be plotted.
In low resolution graphics, these values may range from 0 through 39 in-
clusive. The column is loaded into the Y register (a special storage location
used by several machine instructions — 8 bits long). The row is loaded into
the accumulator. Remember that these are machine language instructions;
hence the values must be in HEX format.

STEP 5 — The PLOT-THE-POINT subroutine looks at the Y register and the ac-
cumulator to find the row and column where the point is to be plotted.
The subroutine then plots the point.

6502 MICROPROCESSOR

Instruction decoder

Arithmetic Logic Unit

Accumulator <«—— Row for the point
Index Register Y ~«—— Column for the point
Other controls and registers Y

Y

STEP 6 — After the point has been plotted, the Return from Subroutine instruc-
tion returns the program to the BASIC Operating System at the point fol-
lowing the CALL S instruction at line 800 (see Operating System, Chap.
2).

The subroutines at Steps 1 and 2 merely clear the screen and set the low
resolution Graphics mode so that the points may be plotted.

For this program, it would be convenient to be able to change the color
value, the column of the plot, and the row of the plot. To do this easily, add
these lines to the BASIC Operating System Program.

75

810 INPUT “WANT TO CHANGE DATA (YES OR NO)?”; A$
820 IF A$ ="YES” GOTO 420

Then, when you want to change values after a run, you can change the COLOR

value at 775, the Column at 779, or the Row at 781. This change saves you the
trouble of typing the complete program again.

Here is a sample display just after entry.

(HERE IS YOUR PROGRAM
768 20 <«— Home cursor and clear screen
769 58
770 FC
771 20 <— Set Graphics mode
772 40
773 FB
774 A9 <«— Select color
775 FF
18 776 85 < Store color value
bytes 777 30
778 A0 ~-— Column
779 05
780 A9 <— Row
781 20
782 20 -<— Plot the point
783 00
784 F8
785 60 <— Return
IF ANY CHANGES—TYPE ADDRESS
IF NOT — TYPE 99
r{ |

.

Here is the display after the run.

White point plotted
at column 5, row 32
o
WANT TO CHANGE DATA (YES OR NO)?=

76

Now change the color to 3 (light purple), the column to 14 (HEX), and
the row to 14 (HEX). This would put a light purple point at the center of the
screen. After typing YES to the question for data, the display shows:

m]
WANT TO CHANGE DATA (YES OR NO)?YES
4 lines IF ANY CHANGES—TYPE ADDRESS
of text’LlF NOT — TYPE 99

m

Type: 775 and press RETURN. The bottom 4 lines of text now show:

IF ANY CHANGES—TYPE ADDRESS

IF NOT — TYPE 99)
2775

775 DATA=’=

Type: 33 and press RETURN. The bottom 4 lines now show:

IF NOT — TYPE 99

7775

775 DATA=?33

ANY OTHER CHANGES (YES OR NO)?=

Type: YES and press RETURN. The 4 lines now show:

ANY OTHER CHANGES (YES OR NO)?YES
IF ANY CHANGES-TYPE ADDRESS

IF NOT — TYPE 99

il |

77

Type: 779 and press RETURN. The 4 lines show:

IF ANY CHANGES—TYPE ADDRESS
IF NOT — TYPE 99

2779

779 DATA=?m=

Type: 14 and press RETURN. The 4 lines show:

IF NOT — TYPE 99

2779

779 DATA=?14 ,
ANY OTHER CHANGES (YES OR NO)?m

Type: YES and press RETURN. The 4 lines show:

ANY OTHER CHANGES (YES OR NO)?YES
IF ANY CHANGES—TYPE ADDRESS
IF NOT — TYPE 99

=

Type: 781 and press RETURN. The 4 lines show:

IF ANY CHANGES—TYPE ADDRESS
IF NOT — TYPE 99

7781

781 DATA=?m

Type: 14 and press RETURN. The 4 lines show:

IF NOT — TYPE 99
?781
781 DATA=?14

ANY OTHER CHANGES (YES OR NO)?=

78

Type: NO and press RETURN. Your program spins by on the four lines at the
bottom of the screen and ends up at:

783 00
784 F8
785 60
ANY OTHER CHANGES (YES OR NO)?a

Type: NO and press RETURN. The 4 lines show:

785 60
ANY OTHER CHANGES (YES OR NO)?NO
PRESS ANY KEY TO RUN=

Type: Any key that you desire to see your newly plotted point.

New light purple point
a ,,_/ near the center of the screen

WANT TO CHANGE DATA (YES OR NO)?

Now it’s up to you. If you want to plot some points in other colors
and in other places, type YES and repeat the process. If you have had enough,
type NO and the computer will return to the BASIC Operating System. You
will then be ready to enter the next program.

FOUR-CORNER PLOT

Before we leave the point plotting techniqUe, let’s write a program to put a
point at each corner of the graphics area. The points would be:

Column Row
Dec. 1 HEX Dec. i HEX
0 0 0 0 Upper left
0 0 39 27 Lower left
39 27 0 0 Upper right
39 27 39 27 Lower right

79

08

84 96L

00 seL
Joul09 1ysi Jomo| 1014 0C V6L

LT €6L
Jo1B|NWNIoe Ul MOJ PROIRY 6V Z6L

14
LT Ll6L
3Wes 9yl MOJ 3ABY| ‘UwN(0d ABUBYD OV 06L

84 68L
00 88L ; °S
Jauod 3yo| Jamo(10ld 0T L8L
LT 98L | .
aWes ay) UWN|0 aABY| ‘MOs d8URY) GV S8/ 4
84 V8L
00 €8L ‘S
Jouiod yyof saddniold Oz Z8L
00 L8L)
oMoy 6V 08L
v
00 6LL
guwnjoy Qv 8LL
0€ LLL
0eoo Ut ai01Ss 68 9LL
> '€
JLIHM 44 SiL J
10[021%33S 6V VLL
a4 €LL
or TLL ¢ T
spow solydeiny1as 0z LLL
24 0LL
85 69L | I
ua3Jos ay} Jes|n 0C 89L

AWVIO0Ud LOTd JINYO0I-YNOAS

‘Jujod [euonippe yoea Joy 39u0 ‘pajeadal aq [|IM G puB § SUOIIIS
1BY3 9q {|iM uoindaoxa ay| "auo 3se| ay} o3 Jejiwis aq (M wesSosd ay|

4, { 797 A9 Change row, leave column the same
798 00

799 20 Plot upper right corner
800 00
3] 801 F8
802 60 Return to BASIC Operating System

This is the longest machine language program that you have had so far.
There are 35 bytes. When the program has been completely entered, the com-
puter will display the first 20 lines as follows:

(HERE IS YOUR PROGRAM

768 20
769 58
770 FC
771 20
772 40
773 FB
774 A9
775 FF
776 85
777 30
778 A0
779 00
780 A9
781 00
782 20
783 00
784 F8
785 A9
786 27
787 20
PRESS ANY KEY TO CONTINUE

k-

Do not make any changes yet, but make a note of any errors in the first 20 lines.
You will have your chance for corrections after the entire program has been
displayed.

To look at the rest of the program, press any key. The computer will clear
the screen and display the next 20 lines if there are that many. This is what you
will see this time:

81

[788 00

789 F8
790 A0
791 27
792 A9
793 27
794 20
795 00
796 F8
797 A9
798 00
799 20
800 00
801 F8
802 60
PRESS ANY KEY TO CONTINUE

G

You can see now that the complete program

has been displayed. When you

press any key on the keyboard, you will see your chance for corrections. The

lines following PRESS ANY KEY TO CONTINUE

IF ANY CHANGES—TYPE ADDRESS
IF NOT — TYPE 99
™

Type: 99 if there are no changes.
The program then says: PRESS ANY KEY T
Type: Any key and you will see:

U//’X

.

a [u}

are:

O RUN

=——Points in all four

corners of the
graphic area

J g

Once again you can add temporary lines to the
gram to let you change values.

82

BASIC Operating System pro-

DRAWING A HORIZONTAL LINE

If you can plot a point, you can draw a line by plotting a series of points.
In the last program, it took quite a long program just to draw four points. For-
tunately, the Apple Machine Language Monitor contains a built-in subroutine
that will draw a horizontal line. All we have to do is store the row of the last
point of the line in memory location 002C where the line-drawing subroutine

can find it. _
The subroutine used in Step 6 below is equivalent to the Applesoft BASIC

statement:

HLIN 16,32 AT 20

Here is the entire program laid out in functional sections.

HORIZONTAL LINE PROGRAM

1. REMARK ** CLEAR THE SCREEN **
768 20 JSR FC58 Built-in subroutine
769 58 '
770 FC

2. REMARK ** SET GRAPHICS MODE **
771 20 JSR FB40 Built-in subroutine
772 40
773 FB

3. REMARK ** SET COLOR **

774 A9 LDA FF Load white color
775 FF '

776 85 STA 30 Store in 0030
777 30

4. REMARK ** GIVE END POINT **

778 A9 LDA 20 End point at 20 (32 decimal)
779 20

780 85 STA 2C Store in 002C

781 2C

83

5. REMARK ** GIVE START POINT **

782 A0 LDY 10 Start point at 10 (16 decimal)
783 10

784 A9 LDA 14 Load accumulator with

785 14 row 14 (20 decimal)

6. REMARK ** PLOT THE LINE **

786 20 JSR F819 Built-in subroutine
787 19
788 F8

7. REMARK ** RETURN TO BASIC **

789 60 RTS Return to Operating System

If you compare this program with the original PLOT-THE-POINT program
shown earlier in this chapter, you will find that they are very similar. In our new
program, we must give the end value (column) before plotting the line. The sub-
routine to plot the line is located at a different memory location than the one
that plotted a point in the old program.

After you have entered the program by means of the BASIC Operating
System, the program is displayed as usual. There are 22 bytes starting at memory
location 768.

ﬁERE IS YOUR PROGRAM

768 20
769 58
770 FC
771 20
772 40
773 FB
774 A9
775 FF
776 85
777 30
778 A9
779 20
780 85
781 2C
782 A0
783 10
784 A9
785 14
786 20
787 19
PRESS ANY KEY TO CONTINUE

2 _

84

Check for correctness. Then press any key.

788 F8
789 60

PRESS ANY KEY TO CONTINUE
.

After pressing a key:

PRESS ANY KEY TO CONTINUE
IF ANY CHANGES—TYPE ADDRESS

IF NOT — TYPE 99
™

If all is correct, you type 99.

788 F8

789 60

PRESS ANY KEY TO CONTINUE

IF ANY CHANGES—TYPE ADDRESS
IF NOT — TYPE 99

799

PRESS ANY KEY TO RUN
u

Now when you press a key, you see:

4 \
. _ — White. bar in row 20

(decimal)
from column 16-32

(decimal)

J" Y

Once again, you may want to make some changes. The lines you used be-
fore would work well in the Operating System.

810 INPUT “WANT TO CHANGE DATA (YES OR NO)?”; A$
820 IF A$=“YES” GOTO 420

85

If these lines are used, the program will display the line and then let you change
the data in any address that you want. If lines 810 and 820 are in the Operating
System, it will be easy to change from the HORIZONTAL LINE PROGRAM to

the next program that draws vertical lines.

DRAWING VERTICAL LINES

The Clear Screen, Set Graphics, and Set Color sections of the Horizontal
Line Program will also work for the Vertical Line Program, so we will leave them
as they are.

Section 4, the Give-End-Point routine, requires that we change only the
storage location of the vertical end point. This will now be stored in location
002D instead of 002C as in the Horizontal Line Program. The subroutine that
draws vertical lines looks for its end point at 002D. This will require that we
change the value stored in program memory location 781.

Section 5 of the Horizontal Line Program gave the beginning point of the
line (the column where the line started). It also gave the row in which the hori-
zontal line was to be drawn. You must change the beginning point of the hori-
zontal line to the column at which the vertical line will begin. To do this, change
the value stored in program memory location 783. You must also change pro-
gram memory location 785, which did contain the row in which the horizontal
line was drawn. This must now be changed to the starting row at which the ver-
tical line will be drawn.

Section 6 must also be changed. Instead of jumping to the subroutine that
draws a horizontal line, you must jump to the subroutine that draws a vertical
line. You need only to change program memory location 787.

Here is a summary of the four changes:

Change 781 from 2C to 2D Storage for End Point

Change 783 from 10 to 14 Column for the line

Change 785 from 14 to 10 Start point of line

Change 787 from 19 to 28 Address of subroutine F828
instead of F819

The subroutine at memory location F828 is equivalent to the BASIC
statement:

VLIN 16,32 AT 20
If lines 810 and 820 have been added to the Operating System and the

Horizontal Line Program has been run, the computer will end with the question
that asks for changes.

86

WANT TO CHANGE DATA (YES OR NO)?=
. _/

Type: YES and press RETURN. The four bottom lines show:

WANT TO CHANGE DATA (YES OR NO)?YES
IF ANY CHANGES—TYPE ADDRESS

IF NOT — TYPE 99
™

Type: 781 and press RETURN.

IF ANY CHANGES—TYPE ADDRESS
IF NOT — TYPE 99

7781

781 DATA=?=

Type: 2D <~ Memory location where end point is stored

IF NOT — TYPE 99

7781

781 DATA=?2D '

ANY OTHER CHANGES (YES OR NO)?=

Type: YES and press RETURN.

ANY OTHER CHANGES (YES OR NO)?YES
IF ANY CHANGES—TYPE ADDRESS

IF NOT — TYPE 99

.

Type: 783 and press RETURN.

IF ANY CHANGES—TYPE ADDRESS
IF NOT —TYPE 99

7783

783 DATA=?=

Type: 14 <+————— Column of line -

IF NOT — TYPE 99

7783

783 DATA=?14

ANY OTHER CHANGES (YES OR NO)?=

87

Type: YES and press RETURN

ANY OTHER CHANGES (YES OR NO)?YES
IF ANY CHANGES—TYPE ADDRESS
IF NOT — TYPE 99

=

Type: 785 and press RETURN

IF ANY CHANGES—TYPE ADDRESS
IF NOT — TYPE 99

7785

785 DATA=!=

Type: 10 <———————— Start point of line

IF NOT — TYPE 99

2785 '

785 DATA=210

ANY OTHER CHANGES (YES OR NO)?=

Type: YES and press RETURN

ANY OTHER CHANGES (YES OR NO)?YES
IF ANY CHANGES—TYPE ADDRESS

IF NOT — TYPE 99
e |

Type: 787 and press RETURN

IF ANY CHANGES—TYPE ADDRESS
IF NOT — TYPE 99

7787

787 DATA=?=

Type: 28 ' <———— Address of new subroutine
(Least Significant Byte of F828)

IF NOT — TYPE 99

7787

787 DATA=728

ANY OTHER CHANGES (YES OR NO)?

Type: NO

Your program is then listed for you in two sections, as was done for the
Horizontal Line Program.

88

When you RUN the program, you will see:

(A

4~ White vertical line

in column 20 from
row 16-32

_ WANT TO CHANGE DATA (YES OR NO)?

If you want to experiment with the Vertical Line Program, make your
changes at this time and try the program again. You will soon be an expert in
plotting points and drawing lines at any place you wish on the screen. Practice
so you will be ready for a program that will join lines together to form a rec-
tangle.

DRAWING A RECTANGLE

Since you know how to draw horizontal and vertical lines, you will be able
to draw a rectangle by joining pairs of lines together. The program that follows
will draw the rectangle shown.

5,34 34,34

No new instructions are used, but the program is longer (45 bytes this
time). We'll once again show the program in sections with the mnemonic codes
as well as the OP CODES.

RECTANGLE PROGRAM
1. REMARK ** CLEAR THE SCREEN **

768 20 JSR FC58 Jump to subroutine FC58
769 58
770 FC

89

2. REMARK ** SET GRAPHICS MODE **
771 20 JSR FB40 Jump to subroutine FB40
772 40
773 FB

3. REMARK ** SET COLOR **

774 A9 LDA FF Load accumulator with color
775 FF
776 85 STA 0030 Store value in memory 0030
777 30

4. REMARK ** END POINT FOR BOTH LINES **

778 A9 LDA 22 End at column and at row 34
779 22 (decimal)

780 85 STA 2C End column stored at 002C
781 2C

782 85 STA 2D End row stored at 002D

783 2D

5. REMARK ** START HORIZONTAL AND ROW **

784 A0 LDY 05 Start of horiz. lines
785 05

786 A9 LDA 05 Row 5

787 05

6. REMARK ** DRAW TOP OF RECTANGLE **
788 20 JSR F819 Jump to subroutine F819
789 19
790 F8

7. REMARK ** RESET START AND ROW **

791 A0 LDY 05 Reset start point

792 05

793 A9 LDA 22 Move to row 34 (dec.)
794 22

90

8. REMARK ** DRAW BOTTOM OF RECTANGLE **
795 20 JSR F819 Jump to subroutine F819

796 19
797 F8

9. REMARK ** START VERTICAL AND COLUMN **

798 A0 LDY 05 Column 5

799 05

800 A9 LDA 05 Start of vert. lines
801 05

10. REMARK ** DRAW LEFT SIDE **
802 20 JSR F828 Jump to subroutine F828

803 28
804 F8

11. REMARK ** RESET START AND COLUMN #**

805 A0 LDY 22 Move to column 34 (dec.)
806 22

807 A9 LDA 05 Reset start point

808 05

12. REMARK ** DRAW RIGHT SIDE **
809 20 JSR F828 Jump to subroutine F828

810 28
811 F8

13. REMARK ** RETURN TO BASIC **

812 60 RTS

This program has 45 bytes. After you have entered it, the computer will
display it in 3 sections (20 lines at a time). If there are mistakes, correct them. If
not, RUN it. Here is what you will see:

97

4)

Here is your

// rectangle

WANT TO CHANGE DATA (YES OR NO)?
N _J

SUMMARY

Machine language subroutines were used heavily in this chapter. The Apple
Machine Language Monitor has several built-in programs for this purpose. You
used the subroutines to clear the screen, to set the Graphics mode, to plot
points, and to draw horizontal and vertical lines.

You again used the load and store instructions to move data to locations
where they could be found by the appropriate subroutine.
You learned to use these instructions:

1. JSR Jump to SubRoutine) — used in the Absolute Mode to take advantage of
built-in subroutines to supplement your programs.

Example: 20 OPCODE
19 least significant address byte
FB most significant address byte

2. LDY (LoaD Y register) — used as a special place to store a value in the Imme-
diate Mode. This value was used by a subroutine.

Example: A0 OPCODE
22 dataloaded in Y register

3. STA (STore Accumulator) — used this time in the Zero Page Mode. This
mode is only used when data is to be transferred to or from low memory
(where the most significant byte of the memory address is zero). Memory
from 0000 through OOFF is called zero page memory.

Example: 85 OPCODE
30 least significant address byte

The machine language instructions that you have used so far in this book
are:

92

Mnemonic Addressing Bytes

Code Mode OP CODE Used Function

LDA Immediate A9 2 Load accumulator

LDY Immediate A0 2 Load Y register

STA Absolute 8D 3 Store accumulator in

STA Zero Page 85 2 memory

JSR Absolute 20 3 Jump to subroutine

RTS Implied 60 1 Return from sub-
routine

ASL Accumulator 0A 1 Shift bits left in
accumulator

The accumulator and Y register and certain memory locations were used
to store values to be used by the built-in subroutines. Here is a summary of these

uses.
Subroutine Y reg. Accum, 0030 002C 002D

Clear Screen - - - - —

Set Graphics Mode | — - - - -

Plot a Point Column Row Color — —

Horizontal Line Start Row Color End -

column column

Vertical Line Column Start Color - End

row row

You are well on your way to machine language programming. In the next

chapter we'll look at how to put alphanumeric characters on the video screen.

Fill in the blanks.

1. The mnemonic code JSR is an abbreviation of

EXERCISES

2. The color values used in a machine language program are two-digit HEX num-

bers. Which of the following are within the recommended range?

a. CC

b. OH

c. FG

d. 33

93

. To plot a point on the screen using the built-in subroutine, these things must
be done first.

a. set the graphics mode
b. select a color value

c. load the Y register with
d. load the accumulator with

. What range of values may be used to plot a point in the low resolution
graphics that we have used in Chap. 3?

a. Column to inclusive

b. Row to inclusive

. The built-in program that draws a vertical line and the one that draws a hori-

zontal line use subroutine(s).
(the same, different)

. Explain when the Zero Page Mode instruction STA (Op Code 85) may be

used.

ANSWERS TO EXERCISES

. Jump to SubRoutine

2. aandd
3. c. column number (0-27 HEX)

d. row number (0-27 HEX)

. a. column 0 to 39 decimal (or O to 27 HEX)
b. row 0 to 39 decimal (or O to 27 HEX)

. Different (horizontal line at F819, vertical line at F828)

. When data from the accumulator is to be stored in zero page memory (0000
through OOFF). The most significant byte is 00 and is unneccessary for a
Zero Page Mode instruction.

94

Chapter 5

Displaying Text

BOS

The video display is 2 window through which you may see what the com-
puter is doing. The screen can display the contents of certain memory locations.
In Chap. 4, you displayed graphics on the screen by using the computer’s sub-
routines. In this chapter, you will learn how to place text directly into the video
display’s memory area so that messages can be seen on the screen.

You will be introduced to some new instructions that will be used to form
a loop similar to IF-THEN and FOR-NEXT loops that you have used in BASIC.

The computer has two registers that can be used as “counters.” These
counters (the X register and the Y register) can be used to index, or count, the
number of times the computer executes a loop. They can also be used to index
the memory locations from which data is loaded or to which data is stored.
This operation leads to the use of a new addressing mode called Absolute In-
dexed Addressing.

DISPLAYING A CHARACTER

We'll start with a simple program that will display the letter A in the
upper left corner of the screen. You have used all the instructions that appear
in this program. The only new item is the use of ASCII codes. Since the com-
puter can understand only numerical instructions and data, all alphabetic and
punctuation characters (as well as certain other special characters) must be given
in numerical form. ASCII codes are used for this purpose. (A complete list of
codes is given later in this chapter.)

DISPLAY ONE LETTER PROGRAM
1. REMARK ** CLEAR SCREEN **

768 20 JSR FC58 Jump to subroutine

769 58
770 FC

95

2. REMARK ** SELECT LETTER ‘A’ ** C1 is the HEX code for

an “A"
771 A9 LDAC1 Load accumulator with ASCil code
772 C1 for A :
3. REMARK ** DISPLAY IT **
773 8D STA 0400 Store it in display’s memory area
774 00
775 04
4. REMARK ** RETURN TO BASIC **
776 60 RTS Return to Operating System

You have seen Section 1 before. It is the built-in subroutine that clears
the screen.

In Section 2, the ASCII code for the letter A (HEX value C1) is loaded
into the accumulator. Other values would give other characters.

Section 3 uses the Absolute Addressing Mode for the STA instruction.
The location of this memory element (0400 HEX) is the upper left corner of the
display.

Section 4 returns to the BASIC Operating System.

Enter the program using the BASIC Operating System. Then, RUN the
short machine language program. You will see the letter A appear in the upper
left corner of the screen. The blinking cursor will indicate that the program has
returned to the Operating System.

The display:

A
1=

Next comes a program that will display an alphabetic character several
times across the top of the screen. You may want to experiment with this pro-
gram. Add these lines to the BASIC Operating System:

810 PRINT: PRINT
820 INPUT “WANT TO CHANGE DATA (YES OR NO)?”; A$
830 IF A$="YES” THEN 420

Then, use the Operating System to enter this program. Do not enter the RE-
MARKS, Mnemonic Codes, or Operands.

96

Example:
1. REMARK ** CLEAR SCREEN **

768 20 | JSR FC58 Clear the screen
769 58
770 FC \ /
\ DO NOT ENTER THESE
t

Computer You enter
prints these these

Only the address and data are entered. The rest of the notes and comments are
just to help you understand the function of each program section. The program
contains 16 bytes.

CHARACTER DISPLAY PROGRAM
1. REMARK ** CLEAR SCREEN **

768 20 JSR FC58 Clear the screen again
769 58
770 FC

2. REMARK ** SET INDEX TO ZERO **

771 AO LDYO Used to index display memory and to
772 00 exit loop

3. REMARK ** SELECT CHARACTER **

773 A9 LDAC1I Load an A, just like the last program
774 C1

4. REMARK ** HERE IS THE LOOP **

775 99 - STA 0400, Y Store in memory location 0400+con-
776 00 tents of Y register
777 04
778 C8 INY Increment Y register for next location
Loop
779 CO CPY 28 Compare Y with 40 (decimal)
780 28
781 DO BNE F8 Branch (if the two values are not equal)
782 F8 to location 0775

97

5. REMARK ** RETURN TO BASIC **
783 60 RTS

Let’s now go through the program section by section. We will discuss the
instructions used and what each does when the program is run.

The screen is cleared in Section 1. This subroutine will be used in most, if
not all, of our programs.

In Section 2, the Y register is loaded with the value zero. The LDY instruc-
tion was discussed in Chap. 4. For this program, the Y register is used to keep
track of how many times the loop in Section 4 is performed. We set it to zero in
preparation for the counting process.

Y register 00000000 (i binary)

In Section 3, the LDA instruction is used in the Immediate Mode to load
the HEX value C1 into the accumulator. This value will be used to display the
letter A in Section 4 of the program.

Accumulator 11000001 (in binary)

A complete set of ASCII codes is given in the Appendix. C1, the code for the
letter A, is the only ASCII code used in this program.

Section 4 forms the loop that prints the letter A at each position along the
top line of the video display. The loop works this way:

First time through the loop: Y register = 0

1. The STA instruction stores the code for A in memory location 0400+0 (1st
position, top line). Notice that the value stored in Y (O at this time) is added
to the value 0400 to determine the memory location used for storage.

2. The INY instruction (Operation Code = C8) increments the value held in the
Y register by one. Therefore, the Y register now holds a value of 1.

3. The CPY instruction (Operation Code = CO) compares the value in the Y
register (now 1) with the HEX value 28 (the second byte of the instruction).

4. The BNE instruction (Operation Code = DO) will cause a branch back to the
beginning of the loop if the two values compared in Step 3 are not equal.
Since 1 and 28 are not equal, the computer returns to the beginning of the
loop this time. If the values were equal, the computer would go on to Section
5 of the program.

Second time through the loop: Y register = 1

1. The STA instruction stores the A in the memory location 0400+1 (0401 is
the 2nd position, top line).

2. The Y register is incremented by the INY instruction and now holds a value
of 2.

3. The value of 2 in the Y register is compared to the value 28.

98

4. Since 2 does not equal 28, the BNE instruction once again sends the com-
puter back to the beginning of the loop.

Third time through the loop: Y register = 2

etc.

Each time through the loop, the character A is printed one place to the
right of the preceding position.

Fortieth time through the loop, Y = 27 HEX

1. The STA instruction stores A in the last position on the top line (0400+27).
2. The Y register is incremented to 28.
3. The content of the Y register is compared to 28 HEX.

4. Since Y = 28, do not branch back. Go on to the next instruction, which is in
Section 5.
Section 5 returns the computer to the BASIC Operating System, where
you are asked if you want to change data.
Since the Apple computer displays 40 characters on each line, you will see
40 A’s on the screen.

AA
WANT TO CHANGE DATA(YES OR NO)?=

DISCUSSION OF THE NEW INSTRUCTIONS
The first new instruction encountered in the program was:

99 STA 0400,Y

OP CODE Operator Index

This instruction is an Absolute Indexed Address instruction and is similar to the
Absolute Address store instruction. However, this new instruction adds the con-
tent of the Y register to the absolute value of the address used.

/_\ Absolute address

STA 0400, Y« Index

If Y=0, STA 0400+0 is equivalent to STA 0400
If Y=1, STA 0400+1 is equivalent to STA 0401
If Y=27, STA 0400+27 is equivalent to STA 0427

Example:

99

Thus we have a way to make the store instruction store in different loca-
tions each time the loop is executed.

In the previous program you have discovered that the top line of the dis-
play screen is assigned consecutive memory locations, 0400 through 0427, in-
clusive.

Top line | AA
memory [A
locations | 0400 0401 0402etc.to0......... 0427

The INY instruction at program memory location 778 is an Implied Ad-
dressing instruction that increases the value of the Y register. It is similar to the
BASIC instruction Y = Y + 1, and is used to increment the memory location for
storing the character A on the display each time through the loop.

The CPY 28 instruction is used here in the Immediate Addressing Mode.
The current value of the Y register is compared to the HEX value 28. This com-
parison enables the computer to make a decision in the next step as to whether
or not to return to the start of the loop. Together with the BNE instruction,
CPY performs a similar function to the BASIC statement:

IF N<>28 THEN GOTO XX (where XX is the line that will be
branched to)

The final new instruction, BNE F8, requires some explanation. It is a
Relative Addressing instruction that completes the loop.

L)

Y e,
BNE F8 Branch if Not Equal -8 locations
‘,—/

If the result of the preceding instruction (CPY 28) is not zero, a branch is taken
back to the beginning of the loop. The branch is made to a memory location
relative to the position of the program counter. The value F8 HEX is equivalent
to the negative number -8, and will cause a branch backwards 8 steps from the
current position of the program counter.

When used as the operand in a branch instruction such as BNE, all HEX
values from 01 through 7F inclusive cause a branch forward from the current
position of the program counter. The following instruction would cause a branch
forward from memory location 783 (where the program counter points as the
BNE instruction is executed) to memory location 78B (783+8).

781 DO BNE 08
782 08

100

An example of the above as used in a section of a program follows.

779 CO CPY 28 Compare the value of the Y register

780 28 with 28 HEX
781 DO BNE 08 Branchif Y is not equal to 28
Program 782 08 forward 8 steps
counter | —> 783
starts 1 784
here ' 785
I 786
i 787
Branch ' 788
forward | 789
8 steps i 78A
ifY — 78B
not = 28 78C

All HEX values from 80 through FF are used by branch instructions as
backward (or negative) branches. In the Character Display Program, the instruc-
tion used is:

781 DO BNE F8 Branch if Y is not equal to 28 back-
782 F8 ward 8 steps

The branch is made backwards (or in the negative direction) since F8 is between
80 and FF. Counting back 8 steps from location 783 puts the branch destina-
tion at 775, the start of the loop.

— 775 99 STA 0400,Y
1 776 00
branch i 777 04
back 8 1 778 C8 INY
! 779 cO cCPY28
i 780 28
! 781 DO BNEF8
! 782 F8
L 783 60 RTS
Program

Counter here
when BNE is executed

We will not go into the method used by the computer to determine the
values of negative numbers. Instead, we will provide tables to determine the
operand used with branch instructions.

101

TABLE TO DETERMINE FORWARD BRANCHES

Steps Branch Steps Branch Steps Branch
Forward | Operand Forward | Operand Forward | Operand
(Decimal) | (HEX) (Decimal) | (HEX) (Decimal) | (HEX)

1 01 49 31 97 61
2 02 50 32 98 62
3 03 51 33 99 63
4 04 52 34 100 64
5 05 53 35 101 65
6 06 54 36 102 66
7 07 55 37 103 67
8 08 56 38 104 68
9 09 57 39 105 69

10 0A 58 3A 106 6A

1 0B 59 3B 107 6B

12 oC 60 3C 108 6C

13 oD 61 3D 109 6D

14 OE 62 3E 110 6E

15 OF 63 3F m 6F

16 10 64 40 112 70

17 1 65 41 113 71

18 12 66 42 114 72

19 13 67 43 115 73

20 14 68 44 116 74

21 15 69 45 117 75

22 16 70 46 118 76

23 17 n 47 119 77

24 18 72 48 120 78

25 19 73 49 121 79

26 1A 74 4A 122 7A

27 1B 75 4B 123 7B

28 1C 76 4C 124 7C

29 1D 77 4D 125 7D

30 1E 78 4E 126 7E

31 1F 79 4F 127 7F

32 20 80 50

33 21 81 51

34 22 82 52

35 23 83 53

36 24 84 54

37 25 85 55

38 26 86 56

39 27 87 57

40 28 88 58

41 29 89 59

42 2A 90 5A

43 2B 91 5B

44 2C 92 5C

45 2D 93 5D

46 2E 94 SE

47 2F 95 5F

48 30 96 60

102

Examples Using Forward Branches:
1. 792 DO BNE 07
793 07
794 .

- ———————

—801 .

Program counter starts at 794
Branch desired to 801 (7 steps)

Look up in table:

Steps Branch

Forward Operand

(Decimal) (HEX)

7 07 <——— Operand

If condition tested is not equal to zero, branch forward to 801

(794+7 steps).

798 DO BNE1F

799 1F

}o
[=]
o

+4--..___..-
o ¢ -
w
—

Program counter starts at 800
Branch desired to 831 (31 steps)

Look up in table:

Steps Branch

Forward Operand

(Decimal) (HEX)

31 1F <—————Operand

If condition tested is not equal to zero, branch forward to 831

(800+31 steps).
814 DO BNE 77
815 77
816 .

T

935 .

Program counter starts at 816
Branch desired to 935 (119 steps)

Look up in table:

Steps Branch

Forward Operand

(Decimal) (HEX)

119 77 <«——— Operand

If condition tested is not equal to zero, branch forward to 935

(816+119 steps).
922 DO BNE 5B
923 5B
924 .

P

= 1015.

Program counter starts at 924
Branch desired to 1015 (91 steps)

Look up in table:

Steps Branch

Forward Operand

(Decimal) (HEX)

91 5B <——— Operand

If condition tested is not equal to zero, branch forward to 1015

(924+91 steps).

103

TABLE TO DETERMINE BACKWARD BRANCHES

Steps Branch Steps Branch Steps Branch
Backward | Operand Backward | Operand Backward | Operand
(Decimal) | (HEX) (Decimal) | (HEX) (Decimal) | (HEX)

1 FF 49 CF 97 9F
2 FE 50 CE 98 9E
3 FD 51 (oh] 99 9D
4 FC 52 cC 100 9C
5 FB 53 CcB 101 9B
6 FA 54 CA 102 9A
7 F9 55 Cc9 103 99
8 F8 56 c8 104 98
9 F7 57 C7 105 97

10 Fé6 58 Cé6 106 96

1 F5 59 C5 107 95

12 F4 60 Cc4 108 94

13 F3 61 c3 109 93

14 F2 62 Cc2 110 92

15 F1 63 C1 1M 9N

16 FO 64 co 112 90

17 EF 65 BF 113 8F

18 EE 66 BE 114 8E

19 ED 67 BD 115 8D

20 EC 68 BC 116 8C

21 EB 69 BB 17 8B

22 EA 70 BA 118 8A

23 E9 7 B9 119 89

24 E8 72 B8 120 88

25 E7 73 B7 121 87

26 E6 74 B6 122 86

27 ES 75 B5 123 85

28 E4 76 B4 124 84

29 E3 77 B3 125 83

30 E2 78 B2 126 82

31 E1 79 B1 127 81

32 EO 80 BO 128 80

33 DF 81 AF

34 DE 82 AE

35 DD 83 AD

36 DC 84 AC

37 DB 85 AB

38 DA 86 AA

39 D9 87 A9

40 D8 88 A8

41 D7 89 A7

42 D6 90 A6

43 D5 91 A5

44 D4 92 A4

45 D3 93 A3

46 D2 94 A2

47 D1 95 Al

48 DO 96 A0

104

Examples of Backward Branches:
1. .
- 775

780 DO
781 F9
—->782 .

BNE F9

[————

Program counter starts at 782
Branch desired to 775 (-7 steps)

Look up in table:

Steps Branch

Backward Operand

(Decimal) (HEX)

7 F9 «———Operand

If condition tested is not equal to zero, branch backward to 775

(782-7 steps).

> 778

807 DO
808 E1
809 .

BNE E1

- ——— - - - - -

Program counter starts at 809
Branch desired to 778 (-31 steps)

Look up in table:

Steps Branch

Backward Operand

(Decimal) (HEX)

31 E1 <«—— Operand

If condition tested is not equal to zero, branch backward to 778

(809-31 steps).

-
(¢ <]
-—

898 DO
899 89

BNE 89

T

O
(=3
(=}

Program counter starts at 900
Branch desired to 781 (~119 steps)

Look up in table:

Steps Branch

Backward Operand

(Decimal) (HEX)

119 89 <«———COperand

If condition tested is not equal to zero, branch backward to 781

(900-119 steps).

105

4, Program counter starts at 886

r795 Branch desired to 795 (-91 steps)

1

! Look up in table:

E Steps Branch

. Backward Operand

i 884 DO BNE AS (Decimal) (HEX)

; 885 AS 91 A5 «———Operand

4
(o0
oo
(=)

While you have the program in the computer, experiment by changing
the ASCII values used at memory address 774. Use the values C1 through DA to
see different letters of the alphabet. When you have finished experimenting, the
next program displays all the 26 alphabetic characters on one line.

We have now talked about these parts of the 6502 microprocessor.

6502

Instruction decoder

Accumulator

X register

Y register

Program counter ~Keeps track of where
the computer isin a

Other controls and registers program

RUNNING THROUGH THE ALPHABET

In the previous program STA 0400, Y was used to place a letier in consec-
utive positions on the top line of the video display. The Y register was used to
index the position.

The X register can be used in the same way. If the ASCII codes for the let-
ters of the alphabet are stored in consecutive memory locations, they can be
loaded into the accumulator by the instruction:

106

LDA 0314,X

Load the from Absolute + contents of
accumulator Address 0314 X register

Either of the two registers (X or Y) may be used with the STA instruction or the
LDA instruction. They may also be used with other instructions, as we will see
later.

After each ASCII code is accessed in the program, the X register can be in-
cremented to provide the correct code for the next pass through the loop. By
adding a new section to the previous program, you can access each alphabetic
character in order while displaying it in a new position on the screen.

RUNNING ALPHABET PROGRAM
1. REMARK ** INITIALIZATION **
768 20 JSR FC58 Clear the screen
769 58
770 FC

771 AO LDY 0
772 00

773 A2 LDX 0 New instruction — load X register with
774 00 zero

2. REMARK ** LOAD AND DISPLAY LOOP **

—» 775 BD LDA 0314,X New instruction — load accumulator
776 14 from 0314+X
777 03
778 99 STA 0400,Y
779 00
780 04
Loop 781 E8 INX New instruction — increment the X
register
782 C8 INY
783 CO CPY 1A 1A hex = 26 (the number of letters in
784 1A alphabet)
785 DO BNEF4 Branch if not =, back 12 locations (F4
786 F4 from table)

107

3. REMARK ** BACK TO BASIC **

787

60

RTS

4. REMARK ** DATA LIST **

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

Ci
C2
C3
C4
C5
Cé6
Cc7
C8
C9
CA
CB
Ccc
CcD
CE
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA

Letter A ﬂ$ ASCII codes
Letter B

Letter C

Letter Y
Letter Z

Section 1 initializes the X and Y registers to zero.
Section 2 loads an ASCII character from memory and displays it on the

top line.

IASCII COD?I——»[ACCUMULATOﬂ—»I DISPLAY |
to to 1

From memory

screen memory

The LDA 0311,X instruction is similar to the BASIC READ statement. The
ASCII code is READ from the DATA stored in memory. Section 2 is a loop that
is executed 26 times (one for each letter of the alphabet).

Section 3 returns control to the BASIC Operating System after the RUN is

completed.

108

Section 4 provides the DATA to be READ by the LDA 0314,X instruc-
tion. This section is used like the DATA statement in BASIC.

Use your BASIC Operating System to load and run the program. The pro-
gram begins at memory location 768 and is 46 bytes long. Here is how the
display looks after the program is run.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

WANT TO CHANGE DATA (YES OR NO)?=

You have learned how to display information on the top line of the screen.
In the next program, you will use a built-in subroutine that will let you type in
characters from the keyboard. It will display the ASCII codes that are used to
represent the letters of the alphabet.

C1 C2 C3
2 = =

A B C

DISPLAYING ASCII CODES

This program uses a built-in subroutine (JSR FD35) that reads a character
you have typed on the keyboard. It puts the ASCII code for that character in
the accumulator.

Another subroutine (JSR FDDA) is used to print the ASCII code for the
character you have typed. The program is designed to let you input all 26 alpha-
betic characters from the keyboard before returning to the BASIC Operating
System. Spaces and carriage returns are provided in the program so that the
typed characters and the ASCII codes will be clearly shown in columns along the
left side of the screen. There are 41 bytes.

DISPLAY ASCII CODES PROGRAM
1. REMARK ** CLEAR SCREEN AND INITIALIZE **

768 A2 LDXO Set counter
769 00
770 20 JSR FC58 Clear screen
771 58
772 FC

X register =

109

2. REMARK ** GET KEYSTROKE AND PRINT **

Start

> 773 20 JSRFD35 Get keystroke
774 35

775 FD

776 8D STA 0340 Save it in memory
777 40
778 03

779 20 JSRFDED Print it
780 ED
781 FD

3. REMARK ** SPACE DISPLAY **

782 A9 LDA A0 Load ASCII code for a space

783 A0

784 20 JSR FDED Display the space. The subroutine uses
785 ED the accumulator for other things so if
786 FD we want another space we:?

787 A9 LDA A0 Load another space

788 A0

789 20 JSR FDED Display it

790 ED

791 FD

4. REMARK ** PRINT ASCIl CODE **

792 AD LDA 0340 Load accumulator from memory
793 40 where character was saved

794 03

795 20 JSR FDDA Print the code as two hex digits
796 DA

797 FD

170

5. REMARK ** MOVE TO NEW LINE **

798 A9 LDAS8D Load an ASCII code for a carriage re-
799 8D turn

800 20 JSRFDED Do a carriage return
801 ED
802 FD

6. REMARK ** BRANCH BACK IF NOT DONE **

803 E8 INX Increase counter (X register)
Loop 804 EO CPX1A Compare X register with 26 (dec)
to 773 805 1A
for new
key- 806 DO BNEDD If not equal, branch back 35 steps (DD
stroke 807 DD from Table to Determine Backward

| Branches)

7. REMARK ** RETURN TO BASIC **

808 60 RTS Return from this subroutine to the
Operating System

Section 1 sets the X register (counter for the number of keystrokes) to
zero and clears the screen.

Section 2 uses the subroutine at FD35 to read the character that is typed.
The character is then saved in memory 0340 for future use in section 4. The sub-
routine at FDED then prints the character on the screen.

Section 3 provides two spaces between the character that was typed and
the ASCII code that will be printed in section 4. The ASCII code for space is
EO.

Section 4 loads the accumulator with the character that was saved in
memory 0340 in section 2. It then uses the subroutine at FDDA to print the
character as two HEX digits (the ASCII code for the character).

Section 5 provides a carriage return (ASCII code 8D) so that the next
keystroke and code will appear on a new line.

Section 6 increases the counter (register X), compares its value with 26
(since there are 26 letters in the alphabet), and branches back to get a new key-
stroke if its value is not equal to 26. If it does equal 26, it moves on to section 7.

Section 7 returns control to the BASIC Operating System.

A suggested addition to the BASIC Operating System for this program is:

177

810 PRINT
820 INPUT “DO YOU WANT TO RUN AGAIN (YES OR NO)?”; A$
830 IF A$=“YES” THEN 700

This would allow you to repeat the program with new inputs from the keyboard.

RUNNING THE PROGRAM

When the program is run, you will see the blinking cursor in the upper left
corner of the screen. This means that the computer is ready for your first entry.

Type: A

A C1 <—— ASCII code for A
= ~<—————— Blinking cursor

® <«——— Blinking cursor

Type: C
A Ci ASCII code for C

B cz/
Ccc3

8 <«——Blinking cursor

Continue in this manner until you have seen all 26 character codes.

Y D9
Z DA

DO YOU WANT TO RUN AGAIN (YES OR NO)?=

If you are curious, you will type in YES and try some characters that are
not alphabetic. Remember that the program is only fixed to let you input 26
keystrokes before returning to the Operating System.

You may want to try the decimal numerals O through 9, punctuation
marks, spaces, etc.

172

Here are the results that we saw when we typed in decimal symbols.

o)

BO
B1
B2
B3
B4
BS
B6
B7
B8
B9

B OOoOOdOWnhWN=

You may want to make a table of ASCII codes for all the keys that you
try. Compare them with the ASCII code table in Appendix A.

Would you like to see the letters printed on an inverted background
(black-on-white)? Or even blinking back and forth from black-on-white to white-
on-black? The next program will demonstrate how to do just that. Move on
when you are ready.

DISPLAYING MORE THAN ONE LINE

The last program and the next one make use of one of the Apple Monitor’s
built-in subroutines that places a character (whose ASCIl code is contained in
the accumulator) on the screen. It then moves over automatically to the next
printing position on that line. The ASCII code for a carriage return (8D) is used
to move to the beginning of the next line when desired.

You will want to experiment with this program, so be sure to include lines
in the BASIC Operating System that will allow you to change data. We will be
using:

810 PRINT
820 INPUT “WANT TO CHANGE DATA (YES OR NO)?”; A$
830 IF A$="YES” THEN 420

You will want to change data because we will show you how to PRINT white
on black, black on white, and letters blinking on and off.

MULTI-LINE DISPLAY PROGRAM
1. REMARK ** CLEAR SCREEN AND INITIALIZE **

768 20 JSR FC58
769 58
770 FC

771 A2 LDXO
772 00

113

2. REMARK ** GET CHARACTER AND PRINT **

773
774

BD
1

775 03

776
777
778

779

780
781

782
783

20
ED
FD

E8

EO
16

DO
F5

LDA 0311,X

JSR FDED

INX

CPX 16

BNE F5

Put character in accumulator on the
screen

New instruction — compares value in
Xregister with 16

Branch back if not equal (-11 loca-
tions)

3. REMARK ** BACK TO BASIC **

784

60

RTS

Return to BASIC

4. REMARK ** DATA LIST OF ASCIl CODES **

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

C1

DO
DO
CcC
C5
8D
Cc3
CF
CDh
DO
D5
D4
C5
D2
8D
C4
Cc9
D3
DO
CcC
Ci

D9

Letter A

Letter P

Letter P

Letter L

Letter E

A carriage return (new line)
Letter C

Letter O

Letter M

Letter P

Letter U

Letter T

Letter E

Letter R

A carriage return (new line)
Letter D

Letter |

Letter S

Letter P

Letter L
Letter A

Letter Y

114

Section 1 initializes the X register to zero and clears the screen.

Section 2 loads an ASCII code from memory (indexed by X) and uses the
built-in subroutine to display it on the screen. This section is a loop. Each time
through, the X register is incremented so that the next ASCIl code in memory
can be loaded. The value in the X register is compared to 16 HEX (22 decimal)
since there are 22 characters in the data list. If X is not equal to 22, a branch is
taken back to the beginning of the loop (location 773).

Section 4 is the data list used by the loop.

Once again, use the BASIC Operating System to load and run the program.
Everything begins at location 768 and is 39 bytes long. We saved a few lines by
using the built-in subroutine to display the data. When the run is completed, the
display will show:

APPLE
COMPUTER
DISPLAY

WANT TO CHANGE DATA (YES OR NO)?=

This program is similar to the Running Alphabet Program. However, the carriage
returns in the data list allowed the use of more than one line on the screen.

Up to now, the book has shown the video display as black letters on a
white background. Actually, your computer displays light-colored letters on a
dark background. However, books are traditionally printed in black letters on
white pages. Oh well, we can’t all be perfect. The versatility of computers is
amazing. Read on and you will see.

The Apple computer has the ability to reverse the color of text material
so that the background for an individual letter is white and the letter is black.
This is called an inverse display. To accomplish this inverse effect, you change
the normal ASCII code as in the following examples:

a. ASCII code for the letter A =C1
Inbinary: 11000001
—_— ——
C 1
INVERSE code for the letter A =01
In binary: 00000001
0 1
b. ASCII code for the letter P = DO
Inbinary: 11010000

N —f———

D 0

115

INVERSE code for the letter P =10
Inbinary: 00010000

——— —r—

1 0

To cause the character to be inverted, the two most significant bits (those in the
two far left positions) are removed.

@000001 C1 @010000 DO
to or to

00000001 01 00010000 10

To demonstrate this feature, make the following changes to the MULTI-
LINE DISPLAY PROGRAM.

785 01 Inverted A
786 10 Inverted P
787 10\ Inverted P
788 0C Inverted L
789 05 Inverted E

Now, when you run the changed program, you will see this difference in
the display.

Original Program Changed Program

APPLE |

Another change ‘to the ASCII code of the character to be displayed will
make the character blink on and off. To demonstrate, change the codes of the
word DISPLAY.

800 44 blinking D
801 49 blinking I
802 53 blinking S
803 50 blinking P
804 4C blinking L
805 41 blinking A
806 59 blinking Y

Once again, notice the changes for the three possibilities for the letter A.

Normal A =C1 1100 0001 in binary
Inverse A =01 0000 0001 in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>